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It is shown that superfluid turbulence arises as a convective, not an absolute, instability. A continuous
source of macroscopic quantized vortices is therefore required, not only to initiate the turbulence, but
also to keep the vortex tangle alive. It is demonstrated that a streamwise-pinned, remanent vortex at the
channel inlet can act as the fluid-dynamical analog of a phase-slip center, injecting vortex filaments into
the flow at a steady rate. Several such vortex mills in tandem are sufficient to initiate and sustain the

turbulent state.

PACS numbers: 67.40.Vs, 67.40.Hf

Superfluid “He moves without friction at low veloci-
ties. Upon exceeding some critical velocity, however, it
enters a dissipative, microscopically turbulent state con-
sisting of a self-sustaining tangle of quantized vortex
lines.!> How this dynamical state is initiated and sus-
tained is not well understood, and forms the topic of this
paper. We first discuss why a continuous vortex source
is required, and then propose a possible model for one.

The physics governing individual quantized vortices
appears to be well characterized by the statement that
they behave like vortex filaments in an ideal fluid, while
also experiencing a frictional force due to the motion of
elementary excitations past the vortex. A good descrip-
tion of the motion of an individual vortex s(&,7) is then
provided by the localized induction approximation:

§=v,+ps'xs"+as'x (v, —v, —Bs'xs") , (1)

where v, and v, are the applied macroscopic normal and
superfluid velocities, a is a temperature-dependent fric-
tion constant, and = (x/4rx)In(cR/aq), with x the quan-
tum of circulation, R the characteristic radius of curva-
ture of the filament, ¢ a constant of order 1, and ag the
core radius of the vortex. The primes denote differentia-
tion with respect to the arc length. In order to incorpo-
rate the most important effect of the interactions be-
tween the vortices, it is necessary to add the condition
that lines which cross will undergo a reconnection.® Be-
cause vortex loops can now be pinched off from vortices
already present, this makes possible the multiplication of
vortex lines and thus the development of the vortex tan-
gle.

The reconnecting-vortex model by itself does not ex-
plain the initiation of superfluid turbulence, since it has
no provision for creating vortex singularities from
scratch. To meet this difficulty, it has often been sug-
gested*® that superfluid “He always contains at least
some metastably pinned, remanent vortices which serve
as initiators of the vortex population explosion. This
idea is also supported by a limited amount of experimen-
tal evidence.””® The speculation then has been that at
some critical velocity such vortices pinned across the

channel will turn into vortex mills, i.e., sources fixed in
space which spool a continual stream of quantized vor-
tices out into the fluid. In reality, however, such pinned
vortices will simply hop off their pinning sites at a rather
low depinning velocity, and will be washed out of the
channel.'® Thus no working vortex mill has ever been
devised, and the relevance of this idea to the initiation of
turbulence has remained uncertain.

While the above difficulty is well known, it can be
shown that the problem is much more general. Consider
turbulence driven by pure superflow, the situation in
which experimentally it is the easiest to produce tur-
bulence in a channel. In previous work,> the reconnect-
ing-vortex model has been implemented in numerical
calculations where infinitely long channel behavior is
simulated by applying reentrant boundary conditions to
some section of the channel, vortices which leave the
downstream face reentering the computational volume
on the upstream face. Not only is a self-sustaining vor-
tex tangle obtained with properties that are in excellent
agreement with experiment, a critical velocity v, (o)
below which the tangle ceases to be self-sustaining is also
found.!" As is obvious from the first term on the right-
hand side of Eq. (1), however, the vortex tangle experi-
ences an overall drift velocity v;. In a real channel,
therefore, the question arises whether the vortex tangle
can sustain itself against this tendency to flush the vor-
tices bodily downstream. To study this problem we have
computed the development of finite plugs of turbulence,
at values of v, for which the reentrant (infinite-channel)
calculations give self-sustaining turbulence. The result is
always as illustrated in Fig. 1: the turbulent region
indeed grows, the plug getting wider as it propagates, but
this process is much slower than the rate at which the
tangle is washed downstream. At least within the con-
text of the reconnecting-vortex model, therefore, the
internal dynamics of the tangle is such that any vortex
tangle of finite extent will be flushed away.

In the language of fluid mechanics, the aforegoing
amounts to the finding that, beyond v.(e), the super-
fluid is convectively unstable against the growth of a vor-
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FIG. 1. Evolution of a turbulent plug at a velocity above
v.(e). The calculations were carried out in a smooth, circular
channel using @ =0.1, and v; =558/D, D being the diameter of
the channel. The figure tracks on the center of the plug, which
has moved (from top to bottom) a distance 0, 40D, 80D, and
120D down the channel.

tex tangle, but that it is never absolutely unstable. To
maintain the superfluid turbulent state therefore requires
the continuous injection of a sufficiency of dynamically
active quantized vortices at the channel inlet to allow the
fully tubulent state to develop downstream. Therefore, a
steadily functioning vortex mill is required not just for
the initiation, but also for the continued existence of
superfluid turbulence.

We have found that a working vortex-mill model sug-
gests itself naturally once one begins to consider the inlet
region of the flow channel. Consider remanent vortices
which have become dynamically active as shown in Fig.
2. End B feels the full tangential field v, in the channel
and is (in the illustration) being flushed downstream.
End A, on the other hand, feels a negligible tangential
velocity, either by reason of its remoteness [Fig. 2(a)] or
because of the way it is pinned [Fig. 2(b)]. In contrast
to a vortex wholly internal to the channel, such a vortex
will remain pinned at A, the vortex will not be flushed
away, and, since end B is being washed downstream, vor-
tex line is continually being spooled into the channel.

The behavior of such a streamwise-pinned vortex can
be explored by implementing Eq. (1) numerically. For
simplicity, we limit ourselves to the case of Fig. 2(b),
fixing end A4 somewhere on the cross section of the chan-
nel and allowing B to move freely along the boundary.
After some transient motions, the vortex takes on the
form of a growing helix with a slowly varying wave vec-
tor k [Fig. 3(a)l. The sense of the helix is retrograde
with respect to the circulation of the vortex, and its
motion is as though it were rotating as a rigid object in
the prograde direction, with a fixed angular velocity w.
In reality, a given point on the vortex advances in the
flow direction with a velocity w/k, while at the same time
it moves slowly outward. This behavior is modified when
the vortex nears the wall of the channel. What happens
there is complicated and depends to some extent on the
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FIG. 2. New remanent-vortex geometries arising from the
consideration of end effects.

location of A4, on the geometry of the channel, and on the
degree of surface roughness. Generically, however, it is
clear from Fig. 3(b) that a succession of vortex loops is
injected into the flow as the end of the spiral vortex re-
peatedly breaks off by reconnecting to the surface.
These loops are of the correct size and orientation to be
amplified by the driving field, and will subsequently grow
across the channel. Thus the spiral helix acts as the
fluid-dynamical analog of a phase-slip center, injecting a

FIG. 3. (a) Steady-state spiral-helix configuration of a
streamwise vortex filament pinned at the center (a=0.1,
vs =20B8/D). The figure actually consists of eight closely
spaced sequential configurations. (b) End-on view of a phase-
slip center in action (a=0.1, v; =558/D). The vortex is pinned
near the upper left. The outwardly growing spiral periodically
reconnects to the boundary and releases a new line segment,
which then moves to the lower right. A vortex-loop reflection
(Ref. 12) occurs as the segment approaches the right end of
the channel.
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continuous stream of vortex segments into the flow. For
smooth walls and simple channel geometries, the release
rate is closely periodic.

The initial portion of the spiral helix is unaffected by
what happens downstream, leading one to conclude that
it represents an intrinsic instability of the streamwise-
pinned vortex, ' the growth of which is eventually cut off
by the channel walls. It is an interesting problem to con-
sider how the elegant limit-cycle behavior (illustrated in
Fig. 3) arises within the context of Eq. (1), and in par-
ticular how the initial wave vector kg, the frequency o,
and the rate at which the helix grows with downstream
distance are determined. The differential equation
describing the vortex configuration is

B _ _ds

ot 13
where §, given by Eq. (1), is the velocity of a particular
point on the line, and & is the rate at which the parame-
ter £ specifying a particular point on the line changes be-
cause of the vortex motion. Even though the resulting
set of equations for the three components of s is highly
nonlinear, the time dependence separates out if a uni-
formly rotating solution of the form y =s,+is;=g(s;)
xexp(iwt) is substituted. Here, s, is the downstream
distance. One is left with a pair of very complicated,
coupled, nonlinear ordinary differential equations for the
real and imaginary parts of g(s;). Some insight can be
gained by going to the small-amplitude limit, where Eq.
(2) takes a linearized form leading to g(s,)=4
xexpl —i(ks|+ ¢o)] and the condition

w=vsk—[3k2—iavsk. 3)

£, ()

If one assumes that near s; =0 the system picks the
mode with the maximum growth rate, restricted by the
condition that the group velocity of the mode still be in
the downstream direction, one obtains ko=v,/28 and
o=v2/4B. Although the argument leading to this pre-
diction is by no means conclusive, the steady-state hel-
ices obtained in the simulations actually agree very
closely with this prediction. The spatial growth is ob-
served to depend only on the friction constant a and to
be initially linear with downstream distance. These, and
other properties of the spiral helix, remain to be investi-
gated.

A single vortex is not sufficient to initiate and sustain
superfluid turbulence. As shown in Fig. 4(a), the vortex
segments are too sparse to interact: they will move along
as individuals and eventually annihilate on the channel
walls. Three streamwise-pinned vortices, however, are
already enough, injecting vortex-line segments at a
sufficient rate to engender a self-sustaining vortex tangle
reaching infinitely far downstream. Although the calcu-
lations are limited to finite-channel lengths, there is no
doubt that the situation shown in Fig. 4(d) represents
such a case. Any section of this particular tangle, if fol-
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FIG. 4. Snapshots of vortex configurations in a smooth, cir-
cular channel, showing the inlet behavior over a distance of 0
to 5D, and the behavior farther downstream in the interval 25D
to 30D. The conditions are (a) one vortex, a =0.1, v; =558/D;
(b) three vortices, a=0.1, v;=408/D; (c) three vortices,
a=0.1, v; =47.58/D; (d) three vortices, @ =0.1, v; =558/D.

lowed downstream as in Fig. 1, is self-sustaining and
reaches limiting properties which are essentially the
same as those obtained in the reentrant, infinite-channel
calculations reported previously. The critical velocity at
which the entire channel suddenly becomes filled with
turbulence is difficult to calculate accurately, again be-
cause it is computationally expensive to look very far
down the channel. Referring to Figs. 4(b)-4(d), howev-
er, it is obvious that when v; =408/D, the initial distur-
bance provided by the vortex mill dies out, whereas at
vs =55B/D it is self-sustaining down the channel. Figure
4(c) may be interpreted as a marginal case which can
only be resolved by increasing the size of the computa-
tion. We find further that the strength of the vortex mill
sustaining the tangle (i.e., the number of configuration of
the streamwise vortices involved) has no effect on the
critical velocity or on the properties of the turbulence far
downstream from the source.

The demonstration that streamwise-pinned vortices
washing into the channel undergo an instability which al-
lows them to act as vortex mills, sustaining superfluid
turbulence above the critical velocity v.(o0), offers the
first substantiation of the vortex-mill hypothesis ad-
vanced long ago by Feynman and others. From a more
modern perspective, we have shown by explicit calcula-
tion that the reconnecting-vortex model combined with
the notion of remanent vorticity is capable of accounting
for the initiation and continued existence of superfluid
turbulence. Aside from resolving this important concep-
tual issue, the model for the initiation of superfluid tur-
bulence presented here suggests intriguing, although still
speculative, interpretations of various well-known onset
phenomena. For example, the common observation that
it is possible to go far above v.(e0), and then initate the
turbulent state by tapping on the experiment, can plausi-
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bly be ascribed to the difficulty of breaking loose the
remanent vortices required to operate the mill. Upon de-
creasing the driving velocity once the system is turbulent
and the vortex mill activated, the system is expected to
stay turbulent until v.(e0) is reached, as is indeed ob-
served. The vortex mill can in fact stay active down to
velocities at which the downstream end repins. Because
these velocities are generally much smaller than v.(e0),
the possibility exists of precursor effects, involving dissi-
pation at a much lower level than that characteristic of
well-developed turbulence. This may be relevant to the
interpretation of the TI-TII transition,?> where a region
of relatively low activity is observed to precede the onset
of fully developed turbulence. Finally, the finding that,
above the depinning velocity, a single quantized vortex
can act as a relaxation oscillator generating very regular
phase-slip events provides new possibilities for the inter-
pretation of recent experiments'* on the flow of super-
fluid “He through microscopic orifices, in which just such
a periodic phase-slip behavior has been observed.
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FIG. 2. New remanent-vortex geometries arising from the
consideration of end effects.




