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Collective Kxcitations of Helium Clusters
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The excitation spectra of compressional modes of Hejv, N 20, 70, and 240, clusters at 0 K are calcu-
lated by treating the cluster as a quantum liquid drop. The spectrum of N 240 strongly resembles that
of liquid helium with a visible roton structure, while for N 20 no roton minimum is seen and N 70
shows a weak minimum. Implications of these findings for superfluidity in helium clusters are discussed.

PACS numbers: 67.40.Mj, 05.30.Jp, 36.40.+d, 67.90.+z

The possibility of observing superfluidity in isolated
Hetv clusters has generated some experimental activity,

but the evidence so far is inconclusive. ' Such experi-
ments are important because superfluidity has been ob-
served in He thin films, finite pores, and other restricted
geometries, and hence may occur in clusters too. An im-

portant difference, however, is that true superfluid be-
havior has so far been discovered in systems in which at
least one dimension is macroscopic, whereas all three di-
mensions are finite in clusters. However, considerable
experimental difficulties lie in the search for superfluidity
in helium clusters, because these are very weakly bound
species. Experiments with high-pressure helium confined
to nonconnected cavities in copper foil showed anoma-
lous specific-heat-capacity behavior at about 2 K.
These thermodynamic measurements constitute the most
suggestive experiments so far, although they do not give
direct evidence for superfluid flow in these systems. In
macroscopic systems a crucial criterion for superfluidity
is the existence of a finite-velocity barrier for exciting the
fluid. Knowledge of the excitation spectrum of a cluster
is thus an essential prerequisite for determining if
superfluidity is possible in these finite systems, and how
this may be probed.

Previous theoretical studies of helium clusters have

yielded extensive information on the ground states. ' In
this first study of the excitation spectra of these quantum
liquid clusters, we model the cluster as a liquid drop of
radius R and constant density po. The liquid-drop model
has been successfully employed in nuclear physics for the
study of collective modes. This model is much more ap-
propriate for liquidlike helium clusters, which are bound

by weak interatomic forces closely resembling those in

molecular liquids. In addition, the ground-state energies
of Heq for N ~ 20 are accurately fitted by liquid-drop
formulas and the calculated density profiles are uniform
inside a surface region. The theory described below uti-
lizes the liquid-drop model together with ground-state
wave functions determined from fu11 microscopic calcu-
lations. We also report microscopic calculations for the
first few excited states using a Bijl-Feynman approach,
which confirm the liquid-drop results.

The low-lying excitations of these clusters are treated
as quasiparticles characterized by momenta kl„and en-

+ —, p(r~, r2)bp(r~)bp(r2)d'r~ d'r~,

where v is the velocity field, po is the equilibrium
ground-state mass density, Bp is the zero-point density
fluctuation, and p is the deformation potential energy as-
sociated with the density fluctuations at two different
points. We have retained terms up to second order in bp
in Eq. (l). We now expand Bp, v(r), and p in terms of
spherical Bessel functions,

bp(r) g pt „jt(kt„r)Yt (r),
bnn

v(r) g Ui „Vjlt(kt„r)Yt (r)),
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We are neglecting the effect of the boundary surface by
approximating the deformation potential as a function of

~ r~
—r2 ~, while retaining its nonlocal character. This is

consistent with the liquid-drop assumption. Since
~ r~

—r2 ~
takes values from 0 to 2R, ko„ is given by the

boundary condition jt(2ko„R) =0. We now use hydro-
dynamic continuity in the interior to relate the
coef5cients U/mn and pimn:

2
&'Imn plmn & pokln ~ (5)

To calculate the kinetic-energy (KE) part of Eq. (1),

e'rgy et, where l, ttt, and n are the radial and angular
quantum numbers characteristic of the excitation. The
quasiparticle momenta kt„are defined by the condition

jt (kt„R) 0, where R is the equivalent sharp radius.
This ignores the very slight movement of the surface
while defining kt„. If the quasiparticles are noninteract-
ing, the complete excitation spectrum consists of one
branch for each l, tn pair, each branch being character-
ized by a unique relationship between kt„and et „. The
ground-state energy of a helium cluster is the static po-
tential energy of the unperturbed cluster, together with
the zero-point energy associated with these quasiparti-
cles. The general cluster Hamiltonian is expanded as a
functional of the density, '

Hlp) -Hipoj+ —,
' po„v'(r)d'r
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we define a velocity potential as

y g v( „j((k(„r)Y( (r),
Imn

with v(r) Vy. After some tedious algebra and use of the integral indentity,

~R ~R ~R
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(6)
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we find~

where
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The diagonal terms make the largest contribution to the
summation over n' and n" in Eq. (12), justifying the
omission of off-diagonal terms in (13). We thereby ob-
tain

v(„2 R 'j[/'(k(„R)] i.
To calculate the potential energy (PE) part of Eq. (1),
we first expand jo of Eq. (4) as

jo(ko I r( r21) 4jrZJ((ko r()J((ko r2)
Im
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Substitution of
x Y( (r() Y( (r2) .

l
j((kon('i ) X ynn'J((k(n'ri )

n' ~ln'

where
~R

y„'„j((ko„r)j((k(„r)r dr

into Eq. (9) yields for the potential energy

(9)

(io)

The ground-state expectation value of Eq. (14) is a sum
of harmonic-oscillator energies, with frequencies given
by

kmn (t(on pok(n v(n ~

Following Pitaevskii, po„can now be eliminated by ap-
plying the virial theorem to the ground state to finally
obtain
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I where

6 k(„

2mS( (k(„)v(„'
(i6)

~(m(k(n) = d r(d r2j((k(nr()J'((k(nr2)Y( (r() Y( (r2)&bp(r()BP(r2)&
& I p( .I'&

mpo mpov „"" (17)

is the Fourier-Bessel transform of the ground-state density-fiuctuation-density-fiuctuation correlation function of the
cluster. Equation (16) is the finite cluster analog of the Bijl-Feynman-Pitaevskii result for the excitation spectrum of
bulk He ii, and allows one to compute the excited-state energies directly from the ground-state generalized static struc-
ture function of the cluster, Eq. (17). We can rewrite Eq. (17) as a sum of expectation values of spherical Bessel func-
tions. For / 0 we obtain

So(ko„)vo, Z jo(ko r;) — Z jo(ko r;) +2 Z jo(ko ri)j ( ok)o)r.
4XPOVPn i~)/ i &1V, i &j &N

(18)

where r; and rj are the coordinates of the particles i and

j, respectively. The expectation values in Eq. (18) are
defined with respect to the N-particle ground-state wave
function of the cluster, +~. By writing this equation
slightly differently we can show that it has a natural
physical interpretation as the quantum dispersion of a
quasiparticle, if we define the quasiparticle coordinate to
be qp -g; jo(kr;).

We calculated the I 0 compressional spectra for
He(v, N 20, 70, and 240, using Eqs. (16) and (18).
The normalized structure functions defined by Eq. (18)
were calculated using 100000, 80000, and 35 000
configurations generated according to the relative proba-

!
bility ! %'jv I, for N 20, 70, and 240, respectively. The
ground-state wave function kikjv contained one-, two-, and
three-particle correlation terms. Optimization of the
wave-function parameters was carried out by variational
Monte Carlo simulation to yield binding energies per
particle within 0.002-0.06 K of those reported in Ref. 4.
The first sum in Eq. (18) contributes unity for a true
sharp surface liquid drop. Explicit evaluation of these
integrals confirms that this is true to a high accuracy for
N 240 (1.00), while for N 70 and 20 the approxima-
tion is less accurate (0.98 and 0.89, respectively). The
excitation spectra for I 0 are shown in Fig. 1(a). These
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structure. We verified these liquid-drop calculations us-

ing the Bijl-Feynman wave functions

IP'z =F P~

for the excited states. The excitation energies in this for-
mulation are given by

g2
'
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FIG. l. (a) The I 0 compressional spectra of /V 20 (open
circles), 70 (open squares), and 240 (open triangles) helium

clusters, calculated using Eq. (16). The solid line is the Bijl-
Feynman spectrum for bulk He!I. The solid circles show the
lowest breathing-mode energies of these clusters predicted by
the classical SSLD model (Ref. 10). (b) The first four I 0
compressional excitation energies of the same clusters, calcu-
lated using Eq. (20). The spectrum of He240 from (a) is also
reproduced here for comparison purposes.

spectra show rapid evolution towards bulk behavior in

the region of the roton excitations as the cluster size in-

creases, with the He24n cluster showing a pronounced ro-

ton minimum, while He2n shows no minimum. A classi-
cal sharp-surface liquid-drop (SSLD) treatment of the
excitations would yield a pure phonon spectrum linear
in k for all cluster sizes, and hence would be qualitatively
completely incorrect. The quantum liquid-drop energies
are also considerably lower than the SSLD predictions
based on the velocity of sound in bulk liquid helium. '

The SSLD values for the lowest breathing mode are
shown in Fig. 1(a) as solid symbols.

An important feature of the quantum liquid-drop
theory developed above is the ability to obtain the entire
excitation spectrum with the same amount of eA'ort as
that needed for the lowest-energy mode, and to obtain
size dependence of the crucial features such as the roton

1128

without any sharp-surface assumption. We evaluated
these energies by Monte Carlo sampling over
For the nth excited state, F is chosen to be F„

P; jo(kn„r;). Since such a simple operator does not
project out orthogonal excited states, we further employ
a Gram-Schmidt orthogonalization procedure to obtain
fully orthogonal excited states. The energies of the first
four excited states are plotted in Fig. 1(b), where they
are seen to show a similar trend with size as the liquid-
drop energies. Agreement of the lowest energy is within
0.3 K for N 240, and within 1.5 K for N 70 and 20.
For N 240, the quantum liquid-drop lowest breathing-
mode frequency of 3.16 K is in excellent agreement with
both the theoretical estimates based on a different Bijl-
Feynman wave function, ' and recent density-functional
RPA calculations. " In particular, we note that all three
methods show the same size dependence of the lowest
breathing-mode energy. Overall we found that the re-
sults based on the quantum liquid-drop model are in

good agreement with those based on the Bijl-Feynman
approach. The Bijl-Feynman approach is more flexible
than the quantum liquid-drop theory and is relatively
straightforward to apply for the first excited state. '

However, the computational complexity involved in suc-
cessive orthogonalization of the excited-state wave func-
tions grows extremely rapidly for higher states, so that
obtaining a complete spectrum becomes very difficult.
An important feature of the liquid-drop theory is there-
fore its prediction of the entire excitation spectrum from
the microscopic ground-state information.

Despite the presence of the boundary surface, these
spectra for clusters with as few as 70 atoms do show the
roton excitations characteristic of liquid helium. From
the excitation spectrum of He24Q one can determine a
Landau critical velocity for exciting this cluster of =49
m/s. The existence of such a velocity barrier analogous
to that in bulk He it leads us to expect superfluid behav-
ior to be manifested in these clusters. Similar con-
clusions have been reached in a recent finite-temperature
path-integral Monte Carlo simulation. '

Establishing superfluidity in He~ is a difficult prob-
lem experimentally, requiring a weak microscopic probe.
The combination of microscopic wave-function calcula-
tions and quantum liquid-drop theory for excitations
demonstrated here for pure He~ now presents a power-
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ful tool for the microscopic study of embedded atoms
and molecules and exploration of their use as spectro-
scopic probes of the cluster dynamics.
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