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Quadratic moments of a particle distribution being transported through a linear Hamiltonian system
are considered. A complete set of kinematic invariants made out of these moments are constructed lead-

ing to the discovery of new invariants.
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Consider a distribution of particles being transported
through a Hamiltonian system. An important first step
towards a complete understanding of its evolution would

be to determine quantities that remain invariant under
this transport. Since a particle distribution is character-
ized by its moments, it is natural to seek invariant func-
tions of these moments.

In this Letter, we construct quadratic functions of mo-
ments that are invariant under the action of a linear
Hamiltonian system. These functions remain approxi-
mately invariant for Hamiltonian systems that are not
strongly nonlinear. Hence they should be useful in a
perturbative analysis of particle distribution evolution
through such systems.

The moment invariants that we will construct are in-

variant for any linear Hamiltonian system and hence are
called kinematic invariants. In contrast, dynamic invari-
ants like constants of motion are invariant only for a
given Hamiltonian. One quadratic moment invariant
was already known. ' We give a simple and practical
method to construct a complete set of quadratic moment
invariants. This method can easily be extended to con-
struct higher-order moment invariants. However, quad-
ratic moment invariants are the most important and
hence we will restrict ourselves to these.

Let z =(q l,pl, q2, p2, q3,p3) be the six-dimensional
vector describing the location of a particle in phase
space. Consider the action of a linear Hamiltonian sys-
tem on this particle. Because the system is linear, the
final coordinates z are given as linear combinations of

initial coordinates z'.

6
zf= g M.bz].

b 1

This can be written compactly as

zf =mz', (2)

where M is a 6x6 matrix. Since the particle's evolution
is governed by a Hamiltonian, it can be shown that M
satisfies the symplectic condition

MJM J, (3)

(5)

where M is the transpose of M and

0 1 0 0 0 0
—

1 0 0 0 0 0
0 0 0 1 0 0J=
0 0 —

1 0 0 0
0 0 0 0 0 1

, 0 0 0 0 —10,
Matrices M satisfying Eq. (3) are called symplectic ma-
trices and the set of all such 6x6 matrices M forms the
symplectic group Sp(6).

Now consider a (discrete) distribution of particles.
Define the quadratic moments of this distribution to be
the following:
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or

((zZ))f =M(zZ)M .

Next define the matrix E, with elements

E b=&z (zJ)b).

Under time evolution, E transforms as [cf. Eqs. (2) and
(3)]

E =(z(zJ)& (Mz(zMJ)) =M(z(zJ))M

or

E MEM (9)

From Eq. (9), we see that the eigenvalues of E are in-
variant, since (9) is a similarity transformation. The
matrix E was defined in terms of quadratic moments [cf.
Eq. (8)] and hence its eigenvalues are also functions of
quadratic moments. Since the eigenvalues were shown
to be invariant, we have, in effect, succeeded in con-

where N is the number of particles in the distribution.
Under transport by M [cf. Eq. (2)], the moments trans-
form as

((z,zb) ) =g(M„z,Mbyzy)
c,d

structing functions of quadratic moment invariants that
remain invariant for any linear Hamiltonian system.

We now explore the properties of these eigenvalues.
We first restrict ourselves to the simple two-dimensional
phase space, i.e., z =(q~,p~). In this case, the matrix F.
takes the form

E=
—(q )p )) &q j')

—(p)'& (p)q))

One can easily compute the eigenvalues of F. to be

&- ~ E((q )')(p(& —(q)p))') 'i'- ~ib.

Using the "triangle inequality" among moments

1&q ipse& I'» 1&q P& I I &pi'& I,
it is seen that b=((q&)(p~) —(q~p&) )' is real. Hence
k is pure imaginary. Accelerator physicists will immedi-
ately recognize e to be nothing but the usual rms emit-
tance (up to numerical factors) which is well known to
be an invariant.

Now consider the full six-dimensional phase space.
The kinematic moment invariants can be constructed fol-
lowing the procedure given below. (I) Construct the
matrix E using Eq. (9):

E=

—(q(p() (q()
—(p)') (q)p()

—(q2p() (q)q2)
—

&p~p2& (q~p2&

—(q3p~) (q~q3)
—(pip3) (qip3)

—
&q(p2&

—(p)p2)
—(q2p2)
—(p2)

—(q3p2)

(q ~q2&
—(q ~p3) (q ~q 3)

(q2p/) —(p]p3& (q3p/)

(q2) —(q2p3) (q2q3&

&q2p2&
—

&p2p3& &q3p2)

(q2q3) —(q3p3) (q3)

(q2p, ) —(p3) (q3p3)

(2) Compute its six eigenvalues. They should be pure
imaginary and come in complex-conjugate pairs (for a
rigorous proof of this fact see Ref. 4). Denote the eigen-
values by +'ie~, + isa, and ~ib3. (3) The quantities b~,

t. 2, and e3 are conserved under linear Hamiltonian trans-
port. Since they are functions of quadratic moments,
they form a complete set of kinematic moment invari-
ants.

In accelerator-physics language, the t. s can be
thought of as three independent eigenemittances. They
are generalizations of the conventional emittances con-
structed in the q~-p~, q2-p2, and q3-p3 planes. These
conventional emittances are conserved only in the ab-
sence of coupling between the 3 degrees of freedom. The
eigenemittances that we have constructed are conserved
even when coupling is present.

If the coupling between diAerent planes vanishes, these
eigenemittances reduce to the conventional emittances as
expected. This can be seen as follows. As the coupling

(q;p~) =(q;q~) =(p;pi) =0 for i &j . (i4)

k, = ~ i((q )(p ) —(q;p; &') 'i' = ~ i e,

for i =1,2, 3.
(is)

It is seen that e, are nothing but the usual rms emit-
tances in the three individual planes. Thus, when the
coupling between the planes is zero, the three invariants

Thus, all the elements of the matrix E in Eq. (13) be-
come zero, except for three 2-by-2 blocks along the diag-
onal. These blocks are identical in form to the matrix
that we obtained in the one-dimensional case [cf. Eq.
(10)]. Since eigenvalues of a block-diagonal matrix are
given by the eigenvalues of its component blocks, the ei-
genvalues of E in the uncoupled case are found to be as
follows [cf. Eq. (11)]:
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(eigenemittances) that we have constructed are identical
to the conventional rms emittances for the three planes.
Otherwise, they contain a mixture of the conventional
emittances with cross terms present.

Finally, we note that an equivalent set of kinematic
moment invariants can be constructed using the fact that
tr(E") is also conserved under Eq. (9). Thus, we can
take the invariants to be

discovery of new invariants. These invariants should be
useful for a perturbative analysis of the evolution of par-
ticle distributions through more general Hamiltonian
systems.

This work was supported in part by the Department of
Energy Contract No. DESA05-80ER10666.

I„=tr (E") . (i6)

In particular, I2 is the quadratic moment invariant
discovered by Lysenko' using a different method. The
other two independent invariants are I4 and I6. It can be
shown that I„ for n odd is zero and that the other I„'s are
functionally dependent on 12, 14, and Is. This can be
seen as follows. The matrix E is such that if X is an ei-
genvalue, then —

X, is also an eigenvalue. The six eigen-
values of E can be written as + Xl, +'l2, and ~X3.
Therefore, from Eq. (16)

Thus, I„O for n odd. Moreover, the nonzero I„'s de-
pend only on three independent parameters. Hence, only
three of the I„'s are functionally independent. These
three functionally independent invariants are convenient-

ly taken to be Ip, 14, and Is.
To summarize, in this Letter we have developed a sys-

tematic method to construct kinematic moment invari-
ants for linear Hamiltonian systems. This led to the
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