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Considering the t(1460) to be the physical glueball G and to mix with rt', we then find the mixing an-

gle to be restricted to 0.15&sin& ) —0.43 from the data of n, g, g' 2y and the upper bound on

t(1460) 2y. The transition matrix element for KL G (bare glueball) is also computed (and found

to be comparable to that for KL tr ). These permit the glueball contribution to KL 2y and hmx, .x
to be significant. Finally, for large mixing angles, the decay of D, into a glueball is sizable, e.g. ,
B(D,+ t(1460)tr+) can be as large as 1%, and searches for glueballs in these decays are highly desir-
able.

PACS numbers: 13.40.Hq, 14.40.Aq, 14.40.Cs

It is well known that the short-distance contribution to
KL 2y is small in the standard model. ' To explain
the experimentally observed branching ratio of KL 2y,
the long-distance contribution must be taken into ac-
count. The meson-pole model provides a good frame-
work' for calculating long-distance effects. It has been
pointed out, however, that the contributions from x, g,
and g' by themselves give, in the nonet-symmetry limit, a
branching ratio which is a few times larger than the ob-
served value. Furthermore, the KL 2y amplitude is

very sensitive to the nonet-symmetry-breaking parameter

p, to be defined later on. Letting p be a free parame-
ter and fitting the experimental data, one obtains p = 0.3
or 0.8, to be compared with p 1 in the exact-symmetry
limit, which shows that nonet symmetry is broken. We
emphasize that in the discussions of Refs. 1-5 only con-
tributions from z, g, and g' poles were considered. To
obtain a better understanding of the situation, it is neces-
sary to consider other possible pole contributions. One
such contribution is a pseudoscalar glueball. As a
matter of fact, if the glueball exists, it can mix with g~

and g8, as we will show later on. The existence of glue-
balls is a clear prediction of QCD, but experimental
detection of such particles is still very unclear. There are
indications that the t(1460) is a possible candidate to be
a glueball; its 2y decay rate was determined to be less
than -2 keV. If t(1460) is indeed a glueball and its

2y decay rate is close to the upper bound just mentioned,
then it mixes strongly with the other pseudoscalars and
its effect on KL 2y can be significant. In this Letter,
we consider the effects of the glueball on the KL 2y
amplitude, its pole contribution to the KL-Kq mass dif-
ference, and the detection of glueballs in D,+ decays.

The plan of the paper is as follows. First, we deter-
mine the amplitude A(KL G ) by calculating the de-

cay KL gg and then, using results from QCD sum

rules to convert G„',G„', into the decays of pseudoscalars

to 2y and the upper bound on the decay t(1460) 2y,
we can restrict the mixing angle. At this stage we have
all the ingredients needed to proceed and compute glue-
ball effects in the decays KL 2y, D,+ Gx+ and the
mass difference hmg, g, .

The lowest-order contribution to KL 2g (gluons) is
shown in Fig. 1. The evaluation of these diagrams is
straightforward and can be carried through in a way
similar to the decay KL 2y. ' One only needs to
change the coupling of the quark-photon vertex eqy„qA"
to the quark-gluon vertex g, qy„X'/2qG„', with k'/2 the
SU(3), generator. Taking the matrix element between
the K and the vacuum, we obtain

A (Kt. 2g) fk G„',G„',G Re(v;d v;*, ) [At+ ARI

where V~ is the Kobayashi-Maskawa matrix element,
G„'„G„', 2 e„«pG,'pG„'„and
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FIG. 1. The lowest-order contribution of KL-glueball transi-
tion amplitude. (a) The irreducible contribution and (b) the
reducible contribution from the penguin diagram.
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4x
A; = ln 1

—y(1 —y)
XI( x]

r 2 ' 2
m,

(3)

XI' =
mw

Xg =

A; is the integral function from Fig. 1(a) and is given by with P; =le, ris, rial, C; = jl, l/J3, 2( —', )'~ 1, and F;
= 1F„,Fs,F i1.

In order to compute the G 2y decay we must also
estimate the amplitude G 2y. This was done recently
in the chiral Lagrangian, where the leading term in the
I/N expansion gave'

is from Fig. 1(b), R= A(G'-2y) =0.23.
A(z' —2y)

(9)

1
—Sx; —2X;

(1 —x, )'
6XI lnx('

(1 —x;)' (4)

g is the charge radius of the kaon and is estimated to be
(=0.8cos8„. To convert G„'„G„', into a glueball, we

parametrize

One may, further, worry about a short-distance contribu-
tion, which, however, was estimated from the Euler-
Heisenberg diagram to be small, ' i.e.,

~(G'- 2y),h.„/~(~'- 2y) -O.O3.

It follows now that
(0 I a, G„',G„'„

I G ) fGmG . (5)

Using the QCD sum-rule results from Ref. 8, fG is equal
to =0.242 GeV for mg = 1.4 GeV.

Using the value (z I Hw I KL) =1.4x 10 mg (Ref. 4)
determined from the experimental value of K~ 2z
through the use of PCAC (partial conservation of axial-
vector current), we obtain

&KL I Hw I G '&
p~ =0.34.

&KL I Hw I ~ )
(6)

g' =s1gs+ c1c2g1 —c1s2G

G =s2g1+c2G

(7)

where s; =sin8; and c; =cos8, . Constraints on the 0, 's

can be obtained from the experimental bound I (i(1460)
2 y) ~ 2.2 keV [in our discussion we will treat

i(1460) as the physical glueball state G], and data on
I (x 2y) 7.48+ 0.34 keV, I (q 2y) =0.56 ~0.04
keV, and I (ri' 2y) =4.47~0.29 keV. '' The 2y decay
amplitudes of x, g8, and g1 are given by

(8)

This result shows that the glueball-KL transition is
significant in comparison with the x -KL transition.

In general, x, g, g', and G will mix. However, it has
been shown that the mixing of z with others is very
small and can be neglected. There have also been esti-
mates' on G, gq, and g1 mixings. Because of uncer-
tainties in the estimates, we will treat the mixing param-
eters as free and constrain them by experiments. To be-
gin with, it has been argued that since m„= m„, =4mI(.
/3+m„/3 = 580 MeV, r) is probably strongly dominated
by g8. g' contains most of the remaining small gs com-
ponent and other terms with g1 and G . The heavier
physical glueball state G should be primarily a superposi-
tion of G and g1. In the case that the small g8 corn-
ponent in G can be neglected, the mixing of g1, g8, and
G is described by two angles 81 and 82 as follows:

g c1gs s 1c2g1+s 1s 2G
0

A(G 2y) A(n' 2y) s2 '2( —,
' )' +c2R . (10)

1

and

2m' ReM)p
p, mg mp

(12)

where the summation on P; is over all possible poles, that
is, z, g, q', and G.

The different transition matrix elements appearing in

the decay amplitudes are related to each other by the no-
net symmetry. Of course the symmetry is broken in the
real world. We parametrize the breaking in terms of two
parameters 8 and p as

&g IH IK'&

&~'
I Hw I

K'&
(13)

&q, IHwlK'&
&~'

I Hw I
K'&

&G Hw I Ki ), we use Eq. (6), and for the
(P; I H, 2y), the experimentally determined values and
the signs determined by theory. It has been noticed that

With the above formulas we can use the data to con-
strain the mixing angles. The bound on the decay
i(1460) 2y restricts the mixing angle Hq to be small:

I &2 I (0.43. With this small 82, we find that the analy-
ses for z, g, and g' to 2y are not altered very much and
e~ is determined to be e~ = —20' and F,/F~ ——1. ' Fi-
nally, the above values and I (G 2y) ~ 2.2 keV, yield
the restriction —0.43 & s2 & 0.15.

We are now ready to calculate the glueball effects on

KL 2y and the Kq-Kq mass difference. The pole con-
tributions to A(KL 2y) and the Amx, g, =2ReM~q
are given by

2y) =Z~KL I Hw I Pi &
2 2

A(P, 2y)
1

P, mg —mp
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the A(KL, 2y) is very sensitive to the breaking parameters b and p. We will use 6=0.17 calculated jn Ref. 4 and
then use the decay Kq 2y to constrain p as a function of $2. In the pole model the amplitudes in terms of Q;, b, and p
are given by

A(rr' —2y)&z'IHg I KL& rnrr' —m,' g(ri 2y)A(KL 2y '+
2 2 0 c$ +$]c2(—', ) '~ p+$)$2P

m~ —m m~2
—m„' A(z' —2y)

mx —m, g(ri' 2y) I+6
mp —m„A (rra 2y) Jp

2 2
rnrr —rn, 8 (G 2 y) '

~ 8 ~ i(2+
2

—$2I, —, ) p+C2p
mx2 —m$ A(rro 2y) ~

and

(i4)

2mI( Re M I2
1&~'

I Hw I
K'&

I

'
m —m

2 2mg —m 1+$ 1/21+
2 2

c& +$]c2( 3 ) p+sisqP
mx —m„'

2 2mg —m, 1+$+
& 2 Si C]C2( 3 ) p

—ci$2p
mx m(' J3

2

m —mK m

mg mg2 2
—sp( -,

' ) '"p+cpP
2

(is)

With all the relations collected so far, we can use Eq.
(14) together with the experimental value I (KL ~ 2y)
=6.22x10 ' eV (Ref. 11) and the constraint for $2 in

Eq. (10) to obtain values for p and 2m' ReM|2 as a
function of s2. For a given s2, there are two solutions for
p, p+ and p, which correspond to A (KL ~ 2 y)/
A(KL z 2y) being positive and negative, respective-
ly. Without the glueball contribution (P =0 and $2=0),
and for 8=0.17, we find

pi =0.82 and (2m' ReM|2)+ =0.29x10 ' GeV

or

p- =0.29 and (2mgReM|2)- = —0.32x10 ' GeV

A similar analysis for 6 0 gives

py 0.69 and (2m' ReM|2)+ =0.94x10 ' GeV

or

p- =0.16 and (2m' ReM|q) —=0.14x10 ' GeV

'When the glueball contributions are included, we obtain
Table I. It is seen that the variation of p+ can be 20%

when s2 varies from —0.43 to 0.15 and h,mg, g, is very
sensitive to p+ and s2. The solution for p — indicates
that p can be reduced by a factor of 2 or more from its
symmetric value and 6m~, ~, is also sensitive to p —and
$2.

The selection of a value for p is unclear at this time,
with all values in Table I being possible. Arguments for
restoring p to its symmetry value are rather weak, be-
cause there is no convincing evidence that a large value
for p will help in explaining the dI= 2 rule in K 2z
decays. On the other hand, p —is a sensitive function of
s2 and when 0.30~ p~0.40, which corresponds to the
large mixing angle, the glueball contribution to h, mI(, g,
is significant.

Finally, when the glueball has a large pseudoscalar
component, then its detection in Cabibbo-favored decays
of D,+ is possible. A simple estimate gives

r(D,'- G~')/r(D, '- q'~')

=
I $2 I

x (phase-space factor) .

TABLE I. Fitting the decay KL 2y determines p as a function of s2. The dependence of p
and 2mit Re Mlq on s2 is shown.

$2
p+

b 0.17 b 0.0

2m' Re M 12

{10—15 Gey 2) p-
b 0.17 6 =0.0 8 =0.17 b =0.0

2m'- Re M12
(10 ' GeV')

b =0.17 b =0.0

0.15
0.0

—0.15
—0.30
—0.45

0.80
0.82
0.86
0.91
1.00

0.67
0.69
0.73
0.78
0.86

0.27
0.24
0.19
0. 1 1

—0.03

0.92
0.90
0.85
0.79
0.68

0.26
0.29
0.32
0.36
0.41

0.14
0.16
0.19
0.23
0.27

—0.33
—0.35
—0.38
—0.43
—0.50

0.14
0.12
0.09
0.06
0.01
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With the experimental data on I (D,+ r}'z+)/I (D,+

tsx+) = 5 ~ 3 (Mark II) ' and = 5.7+'1.5
(NA14) ' and on B(D,+ lsd+) —3.5%, the branching
ratio B(D,+ Gz+) can be as large as 1%. This value

can be reached with the sensitivity of the present experi-
ments.
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