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and Diffusion-Limited Aggregation
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Very unstable viscous fingers moving in a linear channel are investigated as well as diffusion-limited
aggregates grown in a strip between two reflecting walls. In both cases a large number of independent
runs are performed and the cell occupancy distribution is measured. It is shown that the zone of large
occupancy has the width and shape of the Saffman-Taylor finger A =0.5. Similarly, in sector-shaped
cells, the width of the large-occupancy region is the limit width of the stable fingers. In the case of a 90°

cell, its shape is that of a predicted analytical solution.

PACS numbers: 68.70.+w, 47.15.Hg, 47.20.Hw

Diffusion-controlled growth has been the subject of
much recent interest."'? In the classical areas of dendri-
tic growth, viscous fingering in diphasic fluid flow, and
flame propagation, the steady-state motion is now rather
well understood.? The unsteady regime seems to be well
described by various models of stochastic growth initially
proposed for fractal aggregates.>* We will limit our-
selves here to the two simplest cases: viscous fingering in
an isotropic Newtonian fluid in a classical Hele-Shaw
cell and Witten-Sander’s diffusion-limited-aggregation
(DLA) model.> The similarity of their equations is well
known.? In both cases the growth takes place in a La-
placian field (pressure for viscous fingering and walker’s
probability of visit for DLA) and the growth velocity of
the pattern is proportional to the local gradient of this
field. The difference between the two descriptions comes
of course from their deterministic or stochastic nature
but also from the existence of surface tension in viscous
fingering which has no obvious counterpart in DLA.
Several experiments®’ and numerical simulations3®-48
have been devoted to the comparison of the patterns ob-
tained in these two types of growth. The aim of the
present Letter is to investigate the statistical properties
of very unstable fingers and DLA aggregates in specific
geometries. The choice of the geometry is crucial be-
cause in Laplacian pattern-forming systems the motion
of one of the boundaries (the interface) depends on the
other boundary conditions fixed by the cell’s shape.
Three main configurations have been considered: (i) In
their original work, Saffman and Taylor® used a long
linear channel of width W and this corresponds to grow-
ing DLA clusters in a strip geometry;'° (ii) a radial con-
figuration has been studied both for viscous fingering!!
and for DLA® (where it is the most usual choice); (iii) a
third intermediate situation was introduced recently,? in
which the cell has the shape of a sector of a disk. We
limit ourselves here to the investigation of unstable
fingers and DLA aggregates in those configurations in
which the experimentally stable Saffman-Taylor solu-
tions are known: the linear and the sector-shaped

geometry.

Let us first recall the main results on stable fingers.
The experimental situation in linear cells is defined by
only one parameter:3®

1/B=12uV/T)(W/b)*=118(W/1.)?,

where W is the cell width, b its thickness, u the viscosity
of the most viscous fluid, 7 the surface tension, V the in-
terface velocity, and [, =zb(T/uV)'? the capillary
length scale. For 1/B < 7000 a single finger is observed,
scaled on the cell width. In the upper part of this stabili-
ty range the relative width A of the finger tends asymp-
totically towards 0.5. Saffman and Taylor® had found a
family of solutions for the interface shape at T=0. It is
only recently'? that the observed asymptotic finger width
A=0.5 was understood. It results from the selective ac-
tion of surface tension acting as a singular perturbation.
Somewhat similar results were obtained experimentally
in sector-shaped cells'? of angle 6,. Here 1/B is a local
parameter where W is 6oro (ro is the distance of the
finger tip to the apex). The finger can move either from
the apex to the periphery (divergent finger, 6y > 0), or
from the periphery to the apex (convergent finger,
60<0). For all convergent fingers and for divergent
fingers up to 6y <20°, an asymptotic minimum angular
relative width A, was found to depend linearly on the
cell angle.'>!* At large 1/B values, in parallel cells as
well as in the sector ones, the fingers are unstable and
have a fractal-like appearance. In this Letter we present
a statistical analysis of these very unstable viscous
fingers and of DLA clusters. We show that their mean
occupancy distributions are very similar and reflect the
structure of the above-mentioned stable solutions.

Our experimental setup was designed to reach very
large values of 1/B which implies large applied pressures.
We used a linear channel and four sector-shaped cells
(60 <90°). All were made of float glass 19 mm thick.
The cell thicknesses b were either 0.25 or 0.125 mm and
their width in the region of measurement was W=10
cm. We used a silicon oil, Rhodorsyl 47 V 500, with
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T=21%x10"3 N/m and u=0.48 kg/ms. In both the
linear and the divergent cells air was injected at a con-
trolled pressure, and for convergent fingers oil was
pumped out of the apex and an experimental expedient
was used: At rest we created a dip in the meniscus at the
periphery of the cell so that the finger would originate
from this point on the cell axis. (The same expedient
had been used!? for stable fingers.) A typical unstable
viscous finger grown in a linear cell is shown in Fig. 1(a).
It is compared to DLA clusters [Fig. 1(b)], computed in
strip geometries of width W=32, 64, or 128 lattice units.
We used an on-square lattice algorithm and reflecting la-
teral walls.!> As in the experiments,'? a numerical trick
was used to initiate the growth: The very first random-
walking particle sticks on a needle a few particles long
centered on the cell axis. Similar DLA simulations were
conducted in a sector geometry (the cell boundaries are
approximated by a staircase structure and the particles
are locally reflected normally to these boundaries). In
both experiment and simulation we wanted, after a large
number of independent runs, to measure the mean occu-
pancy of each site of the channel. The most extensive
analysis was carried out in the DLA case. In a given
strip we grew N aggregates with the same total number
M of particles. We then counted for each point of the
grid how many times it had been occupied by a particle

3
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FIG. 1. (a) Photograph of a very unstable Saffman-Taylor
finger in a linear Hele-Shaw cell of width W=10 cm and
thickness #=0.25 mm at 1/B=3.3x10°. (b) A DLA cluster
of 6000 particles grown in a strip of width W=128. (c) The
points of the cell where the occupancy rate is larger than rmax/2
are represented in gray. This repartition was obtained from
the analysis of 510 aggregates of the type shown in (b) and
having the same mass M ==6000. The continuous line is the
shape of the Saffman-Taylor analytical solution of width
A=0.5.

of an aggregate. This number, divided by N, gave
r(x,y), the mean occupancy of this point. In viscous
fingering our smallest scale is larger than in DLA so we
did not need such a large number of runs; /NV ranged from
50 to 120. We limited ourselves to the measurement of
the mean occupancy across the cell. We chose a section
of the cell (i.e., an arc of circle for sector-shaped cells)
where the pattern had finished its evolution. We built a
histogram of the occupancy by air in all the runs. A
division by NV gave the mean occupancy r in this section.

The histogram of the occupancy along the axis of the
linear strip obtained from the DLA simulations shows
that, except in the initial region and in the tip region, r is
constant. This means that in the regions where the
growth has ceased the cell translational invariance im-
poses itself on the occupancy profile. We grew aggre-
gates with M from 1000 to 6000 in strips of W =32, 64,
and 128. Scaled on W, the mean length of the cluster
x,/W is proportional to its mass. The falloff of r in the
tip region, of width Ax,, corresponds to the active part of
each pattern and to the dispersion of the tip position.
Ax, is also scaled on W and increases slowlyl6 with x,.
Across the linear cell, all transverse occupancy profiles
have a maximum value 7,y at the center (y =0) and de-
crease to zero at the walls (y ==® W/2). For viscous
fingers, the profiles (a sharp step profile for stable
fingers) become smoother with increasing 1/B and the
width of the regions which are never visited (along the
walls) reduces. The limiting profile of the histogram is
obtained for DLA, where it is surprisingly well fitted by
r(x,y) =rmaxcos’(xy/W). The fundamental result
about all these histograms is that their width at mid-
height is half the channel width > =0.5. In other terms,
going from the stable finger to unstable patterns, the oc-
cupancy rate becomes smeared out but its width at
midheight is preserved. The results are in fact even more
specific: Figure 1(c) shows all the points of the strip
where r is larger that rp.,/2 in a series of 510 DLA
simulations. The limit of this region is very well fitted by
the Saffman-Taylor analytical solution® for A =0.5. We
checked that other sections at different levels of occupan-
cy have different widths but are not fitted by other
Saffman-Taylor solutions. This result is strongly en-
forced by our experiments in sector-shaped cells. In each
case the transverse histograms (measured on an arc of
circle) have a similar shape for DLA and viscous finger-
ing. For convergent patterns the peak is narrow and
there is a large region on each side where r=0. For
divergent patterns the histogram has a large flat plateau
at rmax and falls rather abruptly to zero. For all angles
—90° < 6p <90°, the width at midheight is best fitted
by a linear relation (Fig. 2):

Am=0.5+(3.4%0.2)x10 36, ¢))

(with g in degrees). It is remarkable that for all conver-
gent channels and for the divergent ones with 6, < 20°,
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FIG. 2. Width of the region of large occupancy in sector-
shaped cells as a function of the cell angle 6. A, unstable
Saffman-Taylor fingers; O, DLA aggregates; +, minimum
width observed for stable fingers in these cells; and , best
linear fit [relation (1)].

Am has the same value which characterized the asymp-
totic width of stable fingers.'> For 6> 20° the same
identity is not observed because, as noted in Ref. 12, the
stable fingers destabilized before reaching their asymp-
totic width. If one keeps extrapolating relation (1) for
larger 6y values, the width at midheight of the histogram
of the transverse occupancy distribution is expected to
fill the entire cell width for a critical value of the sector-
cell angle: 6= 4x/5. Our preliminary results suggest
that this critical angle marks a transition in the shape of
the mean occupancy profile which then presents several
lobes. The presence of a fivefold symmetry in diffusion-
limited aggregation has already been suggested in previ-
ous works!7"!"" and we will elaborate on this point in a

forthcoming publication.

Divergent cells with 6y =90° are of particular interest
because a family of analytical solutions is known,'? giv-
ing the finger shape in the absence of surface tension.
These fingers form a self-similar counterpart to the Saff-
also para-

man-Taylor solutions. Their equations,

metrized by their relative angular width A, can be writ-
ten'?

x= % cosal(tana)?+ (tana) ' 791,
)
y= —‘g—l cosal(tana)! ~?— (tana)“Itan [x% ] ,

where A € (0,11, a=(1—1)/2, a € [0,7/2], and Ox is
along the finger axis. Figure 3 shows two realizations of
unstable patterns and the region of large occupancy.
The angular width of the latter is A,, =0.82 +0.02. Its
shape is very well fitted by the corresponding solution of
Eq. (2) and differs markedly from the profile that would
be obtained from the conformal transformation of the
Saffman-Taylor fingers. 2

On the same line, we found for DLA clusters as well
as viscous fingers that the mean occupancy of the cell
width varies as (1/B) ~%!°. The interpretation of this
scaling law?® is clear. The elementary length is the
capillary length /.; the pattern can be considered as a
fractal of dimension dy from /. up to W the width of the
cell. The area occupied b}l the pattern in a square
W X W scales like 12(W/ {f) /. Therefore the mean den-
sity scales like (W/1.) 2~(1/B)’"?”2. The ob-
served power-law dependence, with exponent —0.19
=+ 0.01, corresponds to dy=1.62 %+ 0.02 which is in good
agreement with the fractal dimension measured both for
viscous fingers®® and for DLA patterns*'” in circular
geometry.

In conclusion, our results confirm once more>*® the
similarity between the fractal structure of viscous fingers
and DLA patterns. This suggests that the detailed noise
mechanism does not play an important role. Because our
experiments and simulations were done in geometries
where stable solutions are known, they bring new results.
It is not such a surprise that the cell geometry should
determine the large-scale shape of the profile of mean
occupancy. It is a very striking result, however, that the
selected solution should be the same as the stable one.

FIG. 3. (a) Unstable viscous finger and (b) DLA cluster grown in a cell of angle §=90°. (c) In gray, region of occupancy rate
r > rmax/2 for N =420 DLA clusters of mass M =2000. The continuous line is the analytical solution given by Eq. (2) for A =0.82.
The dashed line is the conformal transform of the Saffman-Taylor solution A =0.82.
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In sector-shaped cells, when the structure diverges from
the apex, it builds up a fractal structure in a larger and
larger range of scales between /. and 6pr¢. During this
buildup it retains the same sensitivity to both the large
and the small scales. In other terms the selective action
of the microscopic length scale acts through the entire
range, up to the largest scale of the pattern. In that
respect our results bring the clue that the role of the
viscous-finger capillary length scale is played by the
lattice-mesh size for DLA clusters. This suggests furth-
ermore that the mean density profile is described by
effective equations similar to the ones describing smooth
stationary states. This phenomenon would explain natu-
rally the well-known sensitivity® of the shape of large
DLA clusters to the underlying lattice anisotropy. In
this case, the corresponding smooth stationary states are
the parabolic needle crystals whose very existence is
dependent on anisotropy,? once surface tension effects
are taken into account. We are currently studying this
analogy. What are the effective equations describing the
mean density profile? Two natural candidates would be
the mean-field equations for DLA %! or the Saffman-
Taylor equations® themselves. The first one does not
give a density profile independent of the position along
the cell’s axis in the trailing part of the finger and the
second possibility is not compatible with our results as it
would require that, for large statistics, the mean density
profile approaches a sharp step profile. More work is
needed to elucidate this question. In fine, we would like
to suggest that the appearance of simple large-scale
coherent structures can show up in the buildup of many
other fractal structures if an adequate type of averaging
is performed.
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FIG. 1. (a) Photograph of a very unstable Saffman-Taylor
finger in a linear Hele-Shaw cell of width W=10 cm and
thickness b=0.25 mm at 1/B=3.3x10°. (b) A DLA cluster
of 6000 particles grown in a strip of width W=128. (c) The
points of the cell where the occupancy rate is larger than rmax/2
are represented in gray. This repartition was obtained from
the analysis of 510 aggregates of the type shown in (b) and
having the same mass M =6000. The continuous line is the
shape of the Saffman-Taylor analytical solution of width
A =0.5.



FIG. 3. (a) Unstable viscous finger and (b) DLA cluster grown in a cell of angle 8p=90°. (c) In gray, region of occupancy rate
r > rmay/2 for N=420 DLA clusters of mass M =2000. The continuous line is the analytical solution given by Eq. (2) for A =0.82.
The dashed line is the conformal transform of the Saffman-Taylor solution A =0.82.



