
VOLUME 63, NUMBER 9 PHYSICAL REVIEW LETTERS 28 AUGUST 1989

Free-Energy Model for the Inhomogeneous Hard-Sphere Fluid Mixture and
Density-Functional Theory of Freezing
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A free-energy density functional for the inhomogeneous hard-sphere Quid mixture is derived from gen-
eral basic considerations and yields explicit analytic expressions for the high-order direct correlation
functions of the uniform Auid. It provides the first unified derivation of the most comprehensive avail-
able analytic description of the hard-sphere thermodynamics and pair structure as given by the scaled-
particle and Percus-Yevick theories. The infinite-order expansion around a uniform reference state does
not lead, however, to a stable solid, thus questioning the convergence of the density-functional theory of
freezing.

PACS numbers: 61.20.—p, 05.20.—y

Density-functional theories of inhomogeneous classical
fluids' and of freezing have received increasing atten-
tion in recent years. Expansions of inhomogeneous fluid
or crystal properties around a uniform reference state
are generated by the m-particle direct correlation func-
tions (DCF's), c,which are functional density deriva-
tives of the excess (relative to the ideal gas) Helmholtz
free energy F,„. The expansions are truncated after
second order because very little is known about high-
order DCF's, c " for n~ 3. Model free-energy func-
tionals, formally equivalent to an infinite-order expan-
sion, always employ weighted (coarse-grained) densities
which are tailored to reproduce available properties of
the homogeneous fluid, notably c (r) and sum rules.
Applications to hard spheres (the reference system for
classical fluids) almost invariably use the analytic solu-
tion of the Percus-Yevick (PY) equation' ' for c
Only recently significant simulation results for the triplet
function c~ (r, r') of the uniform one-component soft-

sphere fluid near freezing were obtained which compare
favorably with a factorized ad hock form and with the
weighted density approximation (WDA) for hard
spheres, both gauged by a given c . The desirable
more comprehensive approach to inhomogeneous fluids
should be able to derive the uniform fluid properties. In
this Letter, I make a step in that direction, and find that
(a) general basic constraints on the nature of the free-
energy functional fully dictate its complete form, to yield
a comprehensive analytic description of the hard-sphere
fluid mixture that contains both the PY and scaled-
particle theories in a unified way. (b) Applications of
this derived free energy raise questions about the conver-
gence of the density-functional theory of freezing.

The lowest-order graph in the diagrammatic (virial)
expansion of the excess (relative to the ideal gas) chemi-
cal potential corresponds to pair exclusion. For the inho-
mogeneous fluid mixture of hard spheres characterized
by the set of one-particle densities jp;(r )j, it reads

&F.,(fp;(r)1)i'k g T g„d r'p~(r)8(~ r —r'~ —(R;+R~)) =gp~(r),bp(r) p-0 j ~

with the unit step function, 8(x )0) =0, 8(x ~ 0) = I, providing an obvious possible weight function for obtaining the
coarse-grained densities p~(r). Instead, on the basis of previous work on uniform fluids, I seek a description in terms
of characteristic functions for the geometry of the individual spheres rather than for the pair exclusion. There is, how-
ever, a unique decomposition of the pair exclusion function in terms of the individual-sphere functions given by the fol-
lowing identity:
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where

ro; Stol. "
J a);' (r; —x)co, " (r, —x)d x.

I use greek indices to represent both scalar and vector quantities and implied "dot" products when needed to form a
scalar. The characteristic (weight) functions for a three-dimensional sphere of radius R; are defined as follows:

ro;"'(r) -8([r (
—R;), ro;"'(r) =V8(l r I

—R) =(r/~)8() r I
—R;), co;"'(r) =

( V8() r (
—R;) ( =6() r )

—R;) .
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n. (x) =g„p;(x)m )(x —x')d'x',
l

with dimensions [nq] =[nq] =(volume) q i, then in

the limit of uniform densities the scalars obey
nq(x) (q, where (q =gP;R; q are the scaled Particle
variables, ' while the vectors vanish, nq(x)~ 0. Using
these definitions Eq. (1) takes the form

l')F„/kt) T " I—I'
Sp;(x) p- o., y"

[n,]+[m'] = (volume)

(with all combinations a, y yielding a dimensionless in-

tegral) implying the following general excess free-energy
functional:

F,„([p;(r)})/kaT= d x@[[n (x),nq(x)}]

d'x e[[n.(x)}]. (4)

The sole approximation made, namely that the excess
free-energy density, N[[n,}],is a function of only the n, 's

as defined, has far reaching consequences because the

( )
—b"F,„(p[;(r) }) /kz)T

8p;, (r()8p;, (rz) . bp; (r„)

Through these three functions I obtain m,
(' (r)

m (r)/4ttR;, m; (r) m (r)/4)tR and m;
' (r)

-m;( )(r)/4nR;. The scalar weights have the property
m;q (k 0) R; 1, R;, S;, and V;forq 0, 1, 2, and
3, respectively (S; and V; denote the surface area and
the volume of the sphere), while the Fourier transforms
of the vector-type weights obe m; q (k 0) 0.
Specifically, denoting t -kR;, m; q (k)/R;(q sin(t)/t
(for q 0, 1,2),

(k)/R;( ) =3[sin(t) —t cos(t)]/t

(for q =3), and m; (k) = —4—lkm; (k). Vector-type
functions are needed in order to obtain a jump discon-
tinuity expressed as a convolution. Defining the dimen
sional weighted densities that represent either surface or
volume-averaged densities

desired function @ is almost automatically derived.
(i) The excess grand potential, 0,„-—P,„V, is simi-

larly expressed, Jd xII(x), through the excess pressure
function, II[[n }], related to N by II = @—+P n,
8+/8n, . The exact relation for the uniform fiuid chemi-
cal potential, " p;~PV; for R;~ ~, when imposed
on our "fundamental-measure" description yields the fol-
lowing differential equation:

II+no =8@/Bn3. (5)

7l2
3

@g[[nq(x)}]= —npln(1 —n3)+ +7l ill2 l
1 —n3 24)t (1 —n3)2

is easily recognized (with [nq} [gq}) as the scaled-
particle theory excess free-energy density of the uniform
hard-sphere mixture " and

, n (x)}]= +
1 —n3 Sn (1 —n3)2

which vanishes in the limit of uniform densities. The re-
sult formally looks like a Y expansion. ' The exact re-
sult' is reproduced by our approach when applied to one
dimension (1D, inhomogeneous hard rods). In three di-
mensions it is indeed of the "rank-two representation"
type as anticipated by Percus. ' Previous attempts' to
generalize the one-dimensional result to three dimensions
were mainly based on the first term in +g.

The general expression for the mth order DCF in
terms of convolutions of the weight functions is

(ii) Note that no, nlnz n2 nl'$2, alld nz(nz'nz) are the
only five positive power (to yield a virial expansion) com-
binations of [n,} as defined that are scalars of dimension
[@]-[II]=(volume) ', thus providing the basis for ex-
pressing @ and II with dimensionless, n3-dependent,
coefficients. (iii) Insert this basis function expansion into
Eq. (5), solve the resulting five trivial differential equa-
tions, and determine the integration constants by requir-
ing that (3) and the third virial coefficient are recovered
in the low-density limit. The result is +=@&+@&,
where

d x4 al, a2, . . . , am

Because the weight functions characterize the hard particles, c( is nonzero only for tight configurations of the parti-
cles when the intersection of all core overlaps is nonzero. Since the derivatives

m@~(m) ( )
~ a, & a, ' ~ a („,) =I„,(„))

become position independent in the uniform density limit, the Fourier transforms of the homogeneous c are simply a
linear combination of products of the weight-function transforms, o) (k). In particular, the triplet function is

cii~q (k),kz, k3) = —g +, )I~[[gm}]m (k()co~ (kz)coq" (k3)6(k)+kz+k3).
a,P, y
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Because ra (k -0) =0 for the vector-type weight functions, the small-k behavior of all c is mainly determined by
The exact sum rule for the uniform fluid, relating the integral of c to the density derivative of c ', as well

as Wertheim's relation for the density profile, ' are obeyed by the present model.
The pair DCF for the homogeneous fluid takes the form (r =

~ r; —
r~ ~

)

c (2)( ) (3)[ (3) (3)]+ (2) [ (3)@ (2)+ (3) @ (2)]

(l ) [ (3) @ (l )+ (3) @ (I ) +. ( I /4 ) ( (2) g (2) + (2) (8 (2) )]

+ (0) [ (3)@ (0)+ (3)(g (0)+ (I)g (2)+ ())g (2)+ (I) g (2)+ ()) (2)]g CO; CO& CO& CO; CO; CO& QP& CO; OP; NPJ CcP& OP;

where

&(q) -a'e, /ag, ag, .

It is identical, by each g term, to the PY DCF written as '

(r) =g AVJ(r)+g AS~&(r)+g AR~&(r)+g B(r —(R;+R&)),

thus providing a new representation for the exact analytic solution of the PY equation in terms of convolutions of the
weight functions. For two spheres R; and RJ at distance r, A VJ (r) is the overlap volume, AS J (r) is the overlap surface
area,

AR,,(r) =B(r (R, +R—, ))
AS; (~r)/4z(R;+R )~+ [R;R //( R;+R /)] B(r —(R;+Rj)) .

(R;+R/ denotes mean radius of the convex envelope of
the union of the two spheres. ) Although this c( guaran-
tees that the corresponding pair correlations g vanish
at core overlap for the uniform Auid, this is unlikely to
happen for the general nonuniform fluid.

Figures I and 2 compare the present c (3)(k,k') for the
one-component hard-sphere system with the simulation
results for soft spheres given only for two particular
geometries: (I) Isosceles triangles with k =k' and vari-
ous angles B such that 0 «

~

k+k'
~
«2k; (2) equilateral

triangles with various side lengths. I use the packing
fraction (3 0.458 to yield the value of c (0,0) for the
"soft spheres. " The overall agreement is very good for
case (2), similar to that of Ref. 8. For case (I) the
shape and general magnitude agree with the simulation

L

but the hard-sphere peak occurs at smaller cose. Direct
and more accurate simulation results for hard spheres
are needed in order to check the accuracy of the model.

The fundamental-measure weight functions connect
well with the Onsager smearing idea as related to the an-
alytic solution of the mean-spherical-approximation
(MSA) integral equations for electrostatic interac-
tions. ' Interactions between surface-smeared charges
satisfy the MSA closure outside the core, while the con-
volutions appearing in the expression for the PV DCF
are the basis functions for the analytic MSA c;J (r), in-
side the core (r (R;+Rj ). Extension of the present
model to systems of charged hard particles and to plas-
mas is currently being investigated.
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FIG. I. Triplet DCF c (k, k') for isosceles triangles vs

cosB for ka k'a 4.3 [a (3/4') '~' is the Wigner-Seitz ra-
diusj. Dots represent the molecular-dynamics results for soft
spheres near freezing (Ref. 7). The line represents our results
for hard spheres at packing fraction 0.458.

FIG. 2. Triplet DCF c(3)(k,k, k) vs ka for the equilateral
triangle geometry. Dots represent the molecular-dynamics re-
sults for soft spheres near freezing (Ref. 7). The line repre-
sents our results for hard spheres at packing fraction 0.458.
Inset: Enlargement of the region 3 ~ ka ~ 5.6.
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The WDA of Curtin and Ashcroft is fitted to the PY
c (which is our derived second order) and yields c
that seems to agree with our result. The results of the
present model, when applied in the density-functional
theory of freezing truncated at second or third order, are
nearly identical to those obtained from the WDA:' the
third-order term drastically worsening the good second-
order predictions for fluid-solid coexistence conditions.
The present model supports the conclusion of Curtin'
that the convergence of the functional expansion is not
su%ciently rapid to justify truncation at low orders, and
that the success of the second-order theory is apparently
fortuitous. Moreover, and now contrary to the WDA, '
the infinite-order result of the present model does not
yield a stable solid: Extensive numerical calculations re-
veal that in the family of one-particle densities that are
obtained from Gaussian distributions at lattice sites, the
uniform density limit (i.e., infinitely broad Gaussian
peaks) always corresponds to minimal free energy—
which is a 1D-property. In other words, the present
model free energy is never lower for a crystal state than
for the uniform liquid state, and thus does not predict
freezing for 3D hard spheres. The fundamental-measure
weight functions do not provide enough smearing of the
Gaussian peaks to enable one to regard the solid as a
liquid with an effective density. On the other hand, our
fundamental-measure description is not a priori limited
to small nonuniformity (since it does yield the exact ID
result) and derives the PY scaled-particle theory which
is the almost canonical theory for the uniform fluid. The
nature and convergence of the functional expansion for
solidlike densities are, at present, not well understood
and require further systematic analysis.
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