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Virtual Photoconductivity
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We show that a semiconductor photodiode, or photoconductor, will exhibit a strong reactive response
to optical radiation tuned to the transparent region just below the band gap. This response is due to the
excitation of a virtual electron-hole gas, readily polarized by the dc electric field, which can contribute a
major change () 1) in the low-frequency dielectric constant. For ultrahigh-speed signals, this nondissi-
pative photoresponse can become similar to conventional dissipative photoresponse by real carriers excit-
ed above the band gap. The influence of this reactive response on zero-point electromagnetic fluctua-
tions may aid the laboratory detection of Unruh-Davies-Fulling-DeWitt radiation.

PACS numbers: 42.65.Bp, 72. 10.—d, 78.20.Bh, 78.65.Fa

Semiconductor photodiodes typically operate at optical
frequencies mo above the semiconductor band gap, co„
=E„/h. If an incident beam is intensity modulated at a
frequency co, the output photocurrent will have an in-
phase (dissipative) component Re {J(co)l. If coo is
lowered below tu„, the probability of real (dissipative)
transitions goes sharply to zero, vanishing exponentially
in the Urbach absorption tail. Since the photocurrent
tracks the absorption coefficient, Re{J(co)l also vanishes
sharply, as is well understood in the conventional theory
of semiconductor photoresponse.

In this paper we show that the corresponding out-of-
phase (reactive) component, Im{J(co)l, does not vanish
as coo is lowered below cu,„. Indeed, for very-high-speed
signals the nondissipative photoresponse of virtual car-
riers excited below the band edge can become similar to
the conventional dissipative photoresponse by real car-
riers excited above the band edge. In eff'ect, the virtual
electron-hole pairs are readily polarized by the dc field of
the photodetector, leading to large changes in the dielec-
tric response of the material.

A closely related virtual excitation process was recent-
ly analyzed, by Chemla, Miller, and Schmidt-Rink' and
by Yamanishi, in the context of excitons in quantum
wells electrically biased perpendicular to the layers. The
excitation of a hole at one edge of a valence-band quan-
tum well and an electron at the opposite edge of the cor-
responding conduction-band quantum well creates an
electric dipole. Chemla, Miller, and Schmidt-Rink and
Yamanishi studied the virtual excitation of such quan-
tum confined excitons. As the quantum well is made
wider and wider, the dipole obviously becomes larger and
larger. The resulting polarization can be expressed as a
nonlinear optical susceptibility g (0,0, —coo, coo). We
show that g (0,0, —coo, coo) becomes largest when no
potential barriers exist to block carrier motion. In other
words, g (0,0, —coo, coo) is largest for bulk semiconduc-
tor material. Quantum wells are not necessary, but if
they are used their potential barriers should be parallel
to the applied field so as not to impede the polarization
of virtual carriers.

We consider the photoconductive response of a photo-
diode driven by light waves in the nonabsorbing, near-
band-edge region. A particularly simple and physically
appealing picture emerges, as illustrated in Fig. 1. Pho-
tons above the band edge produce free electrons and free
holes. Photons below the band edge produce virtual
electron-hole pairs. These are not quite free of one
another, but behave as if they were bound by the detun-
ing energy, d= E,.—Acoo. —Since 6 can be made very
small, the electron-hole pairs can appear weakly bound
and therefore highly polarizable by the dc electric field
of the photoconductor. Bulk excitons, which occur in
semiconductor absorption spectra at low temperatures,
are also highly polarizable and contribute to the virtual
response. The strong photoconductive response is due to
near-free virtual electrons and holes, and to virtual exci-
tons if they are present.

In this spirit we write the low-frequency polarizability
of virtual carriers using a simple heuristic model that
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F&G. 1. The optical field creates a virtual level near the
conduction-band edge. The virtual occupation probability is
the modulus squared of the ratio of the dipole matrix element
~eA;.E(coo)

~
divided by the detuning energy (E,.—hcoo).

These virtual electron-hole pairs respond to electric bias as if
they were bound together by the small detuning energy. The
result is a large reactive component of photocurrent.
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will be justified below. The standard expression for the
polarizability of N virtual electron-hole pairs per unit
volume with an effective binding energy 4 is

e N (1)
m, (rf(a/6)' —a)'J '

where e is the electronic charge and m, g is the reduced
mass. We assume ro«h/i'i, and so drop a) from Eq. (1).

According to quantum perturbation theory, the virtual
occupation probability of a level is the modulus squared
of the ratio of the Rabi matrix element

I eX,„E(roo) I to
the detuning energy [E„(k)—ha)0]. We compute N by
multiplying this modulus squared by the density of states
in k space. The dc polarizability g(0) becomes

e'
I ex„E(a)0) I'h'

m, (r[E„(k) iT—ha—)0] ' '

where I is a phenomenological damping energy and
E„(k) is the valence-to-conduction band energy at the
point k in the Brillouin zone (BZ). As long as the
modulation frequency a) &6/i'i, Eq. (2) will adequately
describe the semiconductor response. In this paper we
will attempt to justify Eqs. (1) and (2), which describe a
simple heuristic model of virtual electron-hole pairs
behaving as bound carriers.

There is an inverse process called electroreffectance
(ER), which has been much studied in the past. In ER,
a dc electric field changes the optical dielectric suscepti-
bility in the vicinity of the band gap, or at other critical
points in the Brillouin zone. We now show that the ex-
pressions developed to describe ER will also describe vir-
tual photoconductivity, with an appropriate permutation
of variables. The change in optical polarization P (coo)
due to a dc field can be derived from a free-energy func-
tion F

g ( a)p, a)O, O, O) E (rop), (3)(3) I E(0) I'

where, following the usual nonlinear optical conventions,
the total electric field is written

E(t) -E(0)+E(a)0)e '+E( —a)0)e

(4)

from which the corresponding nonlinear dc polarization
follows as

P (3) 0
aE(0)

g (0,0, a)p, a)p)E( —ri)p)E(a)0)E(0) . (s)

The point is the two susceptibilities g(3)(0,0, —a)o, a)0)
and g( )(—a)o, a)O, O, O) in Eqs. (3) and (5) are the same
since they are derived from the same free energy and
differ by only a permutation of frequency arguments.
We have the choice then of calculating the effect of a
light wave on a dc dielectric property, or the effect of a
dc field on the optical susceptibility. We choose the
latter, invoking a previous derivation of low-field electro-
reffectance. Using Eqs. (3) and (4), we then invert the
calculation to obtain the virtual photoconductivity, Eq.
(5).

The conventional linear optical susceptibility g ' (a)0)
of a semiconductor is given by

+(()(~ ) 2 d k I ex,„ I'

(2)r) " az E„(k) i I ha)—o—(6)

When coo is tuned near ro,„ the denominator becomes
near resonant and g ' becomes quite sensitive to the ex-
act values of E„(k) and (00. It is well known in band
theory that a dc electric field produces a monotonic,
linear change of wave vector with time t: k k(t) -k
+eE(0)t/h Such a. time-dependent k vector has a pro-
nounced effect on the contribution of E,„(k(t)) to the
near-resonant denominator of Eq. (6). If IE(0) I is so
weak that the field-induced kinetic energy e I E(0) I t /
2m, (r is less than the phenomenological damping energy
1, then spectral line-shape theory gives the famous
third-derivative line shape of ER, i.e., a g(3) proportion-
al to 8 g

'
/Bazoo. This may also be written

The factor —,
' arises because the amplitude and root-

mean-square values of the zero-frequency field corn-
ponents E(0) are identical. The third-order dielectric
free-energy function F is therefore

F"'-g"'( —coo, coo, 0,0)E (coo)E( —ro ) E(0) I'

e Iex I h~( )(—~o, ~o,o,o)—
(2~) ' "» m, (r[E„(k) ir —h, c001—' (7)

This is similar to Eq. (2), essentially justifying our original heuristic picture that virtual electron-hole pairs respond as if
they were bound together by the detuning energy.

We now rewrite and simplify Eq. (7). Using Fermi's "golden rule, " the matrix element and density of states p(E)
can be linked to the optical-absorption coefficient a(coo) as follows:

2zroo I eX,„E(a)0) I p(E) a(E)cn
I E(coo) I /2x,

where E measures the kinetic energy from the bottom of the band and n is the optical refractive index. The formula for
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II I 3

g (0,0, cop, cop)(3) 1 e acn h
32~ Ecv meff

1.1 x 10
[~ (meV)]'

(9)

The ratio of optical Rabi matrix element to detuning,
~ eX;,E(cop) )/4, must be less than 1 in order to satisfy
the perturbation limit for the optical field. As optical
fields approach this limit and for a detuning energy

12 meV, the nonlinear zero-frequency susceptibility
g (0,0, —cop, cop)

~
E(cop)

~
can become = —,', which

implies a change in low-frequency dielectric constant

In Ref. 1, the quantum-confined-exciton (QCE) sus-
ceptibility g( (0,0, —cop, cop) was evaluated at a detun-
ing energy of 42 meV. At the same detuning energy, the
bulk g (0,0, —cop, cop) due to virtual photoconductivity
in Eq. (9) is 1.5&c10 esu which is —15 times larger
than the nonlinearity deduced' for the QCE case. This
is due to the inherently limited electric polarization
achievable for fields perpendicular to a narrow quantum
well, as mentioned earlier. Photon absorption is absent
in either instance, at least in the perturbative limit where
the concept of a g makes sense.

We now compare the sensitivity of virtual photocon-
ductivity with that of conventional dissipative photocon-
ductivity. A conventional photodiode responds to the
zero-frequency dc bias field and to an amplitude-
modulated optical wave, which may be regarded as the
superposition of two closely spaced optical frequencies.
Therefore, a conventional absorptive Iihotodiode response
can also be described in terms of a g 3~. The difficulty is
that photoconductive response will usually be described
by material-dependent properties. Fortunately, in the
limit of fast modulation frequency m, many of these drop
out. For example, at high co we can neglect the momen-
tum relaxation time, carrier recombination lifetime, and
the carrier sweepout rate. This leads to the following
simple g for conventional absorptive photoconductivi-
ty:

g (0,0, —cop, cop) becomes

(3)(() 0 ) 1 ~ e h cn a(E)dE
g 0,0, cop, cop

8n "o E,„meff (E+P)
By expressing g in terms of the experimentally deter-
minable absorption coefficient a(E), Coulomb effects on
the matrix elements are mostly accounted for. Since
a(E) is known, Eq. (8) can be integrated numerically.
For direct-gap semiconductors such as GaAs, a(E) is
zero below the band edge and approximately constant at
a = 10 /cm above the band edge. Using these values Eq.
(8) can be expressed in closed form:

A direct comparison of Eqs. (9) and (10) shows that the
ratio of conventional dissipative photoconductivity to
reactive virtual photoconductivity is simply 4n(h/hco) .
As the optical modulation sidebands approach the band
edge, dissipation will not set in until hco h. For detun-
ing —hco, the two types of photoconductivity can be of
similar magnitude, and one will merge smoothly into the
other as the photon energy hcop is tuned into the band
gap E,„. For extremely fast modulation frequencies (in
the THz region), virtual photoconductivity would have a
role to play. Furthermore, nondissipation of the light
wave permits traveling-wave devices in which the
response would build up with propagation path length.

At low temperatures a sharp, distinct excitonic
feature is present below the absorption edge in bulk ma-
terial. The same feature appears right at the absorption
edge in room-temperature multiple-quantum-well struc-
tures (MQWS). It is well known in ER that the exci-
ton response is proportional to a first derivative of the
linear spectrum rather than the third derivative. This is
due to the simple field-induced Stark shift in exciton en-
ergy E,„E,„—x

~
E(0) ( /2, where x is the exciton po-

larizability, as opposed to the more complex field-
induced temporal variation contained in E,„fkj E,„[k
+eE(0)t/h j. In the exciton case the susceptibility
g(cop E,„/h) —can then be expanded as

g"'+ jag"'/9 pj[x(E(0) )'/2hj.

Then similarly to Eqs. (6) and (7),

f eX,„J'g"'( —
cop, cop, 0,0) =x '"

~ (((0) ~'g(E)dE,"-"(E+d, )'
(»)

where g(E) is a normalized exciton line-shape function,
( p(0)

~
is the probability density per unit volume of the

exciton wave function at its origin, ~p(0) ~ g(E) is a
density of states per unit volume, E is the energy mea-
sured from E„, and 6 is now the exciton detuning
(E,„—hcop). Implicit in Eq. (11) is the virtual-exciton
phase-space occupation probability

~
eX,„E(cop) ~

/A
that was emphasized in Ref. 1. Indeed, Eq. (11) has the
same physical meaning as Eq. (2): (occupation prob-
ability) x polarizability. Once again Fermi's "golden
rule" converts from matrix elements to absorption coef-
ficients:

2mop
~
eX,„&(0)

~ g (E) =a(E)cn/2n .
Equation (11) can be integrated numerically using the
experimental excitonic absorption spectrum a(E) if
known, or analytically if 6, is much greater than the exci-
ton linewidth. Using the approximations that rc —e h /
m, ffEb and that the exciton oscillator strength is propor-
tional to binding energy, fa(E)dE = aEb,

3
1 e acn i

x 8x Ecvmeff
(10) g ' (0,0, -cop, cop) =(3) 1 e acn

4K Eexm eff + Eb
(12)
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where Eb is the exciton binding energy. Equation (12)
should describe excitons both in bulk material and in
MQWS biased parallel to the layers. Perpendicularly
biased MQWS excitons were treated in Refs. 1 and 2.

A comparison of Eqs. (9) and (12) shows that the
virtual-excitonic response can be —8h/Eb bigger than
the virtual-free-carrier response. Numerical integration
of Eq. (11) over the measured MQWS excitonic ab-
sorption spectrum yields a response ratio -6/(3 meV).
In practice, the apparent superior response of virtual ex-
citons is rather fragile. Thermally induced mixing of the
exciton and continuum states reduces the excitonic oscil-
lator strength at room temperature. Whether ER in
room-temperature MQWS has first derivative (exciton-
ic) or third derivative (near-free-carrier) behavior is still
being checked' " experimentally. In any case, strong
optical matrix elements

~ eA;, E(too)
~

~ Eb (where Eb is
now the difference energy between the exciton and the
continuum threshold) will destroy the exciton, invalidat-
ing Eq. (12) and leaving only the virtual-free-carrier
photoconductivity, Eq. (9).

In practice, changes in the low-frequency dielectric
constant even larger than Eq. (9) would require stronger
optical fields, but a dissipative nonvirtual response might
occur. A sum to all orders in the optical matrix element
squared, ( eA;,E(too) ~, would be highly desirable to set-
tle this question.

Possible applications of virtual photoconductivity in-
clude both ultrafast optical signal detection and the
creation of large, sudden changes in the low-frequency
dielectric constant of semiconductors. It was recently

proposed' that zero-point electromagnetic field fluctua-
tions would respond nonadiabatically if the change in
dielectric constant were large and fast enough. The re-
sulting microwave photons are called' Unruh-Davies-
Fulling-DeWitt (UDFD) radiation. The optical excita-
tion must be very clean and nondissipative, since dissipa-
tion would be linked to noise fluctuations which could
overwhelm the UDFD radiation.
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