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We investigate thermal eff'ects occurring when an inertial string vacuum is described in an accelerat-
ing frame. It is shown that there is a critical acceleration corresponding to a temperature equal to TH/n;
where TH is the Hagedorn temperature for a bath of free strings.
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It is well known that an observer at constant accelera-
tion a in a Minkowski vacuum will feel the existence of a
heat bath with a temperature T a/2z. ' In this paper
we investigate the nature of these thermal effects if such
an observer accelerates in a vacuum of free strings. In
particular, we study the occurrence of a critical tempera-
ture akin to the so-called Hagedorn temperature

TH -O(1/Ja') above which the string partition function
is known to diverge.

We start by defining local thermodynamic variables in

the accelerating frame associated with the string vacu-
um. We find that they diverge above a critical accelera-
tion corresponding to a temperature T, -TH/rr, rather
than TH, as one might expect. We show how this pecu-
liar factor of I/x can be understood in a geometrical
way, and interpret it in terms of winding strings. This
allows us to speculate about thermal eH'ects of strings in

de Sitter space.
Consider an observer A uniformly accelerating in

the (x,x ') plane along a world line given by
(x~ a 'sinhaz, x~ -a 'coshaz). The Rindler coor-
dinate system (z,g,x'),

x (a '+ g)sinh(az) =psinh(az),

x' (a '+g)cosh(az)=pcosh(az),

x'-x' (i-2, . . . , d),
is the coordinate system associated with the Fermi-
Walker nonrotating tetrad carried by A. Actually, the
trajectory p, x' constant corresponds to an observer ac-
celerating in the x~ direction with acceleration p . The
most important property is the occurrence of a horizon
for these observers. It was shown by Fulling and
Unruh that because of this, second quantization is

inequivalent for inertial and accelerating observers.
Specifically, the distinction between positive and negative
frequencies is frame dependent. Consequently, the two
observers will define creation and annihilation operators,
and thus their vacua, diH'erently.

If one tries to study the thermodynamic properties of
this thermal bath, one encounters a problem. Normally
local thermodynamic variables can be defined using
homogeneity of space. For instance, the free energy den-

GF(z, z )
1 g 1

4x k -— (z —z'+ipk ) —i e

p e~ t ~'lD (E p)1

(2z)4 " p (3)

where P 2m/a and

D,(E,p)-
E —p +IF

+ 2rrB(E —p )
col E I

is the thermal propagator in four dimensions.
Furthermore, they showed that each of the terms in

the sum over k in (3) can be given an attractive interpre-
tation by writing the propagator, using the Schwinger
proper-time method, as a sum over paths. It turns out

sity for a bath of free scalar particles can be calculated
by doing a path integral over one-loop diagrams, and di-
viding by the volume in the end. For the accelerating
observer such a procedure makes no sense, as the coordi-
nate system describes observers at different accelerations
and hence different temperatures. In fact, the tempera-
ture felt by the observer at constant p is T (2np)
This highlights the necessity of formulating the thermo-
dynamics of accelerating systems in local terms.

To this end, let us, for the moment, restrict our atten-
tion to scalar particles. We observe that physical pro-
cesses measured by A in the Minkowski vacuum are con-
trolled by the Feynman propagator

dd ip (x —y)
GF (x,y)— (2)

(2n)" p'+I'+ie
Expectation values of relevant physical quantities, e.g. ,
the stress-energy tensor, can be directly determined by
performing certain operations on the propagator.

A careful study of the Feynman propagator in a
Rindler frame was carried out by Troost and Van Dam.
They examined the expression one gets if one substitutes
Rindler coordinates (1) for x,y in (2). It was shown
that the resulting expression, in the case of massless par-
ticles in four dimensions, and when the end points are
taken on the world line of A, is exactly a fiat-space
thermal propagator. Specifically, between two points
parametrized by z and z' (with g and the transverse
coordinates zero), one finds

1989 The American Physical Society 945



VOLUME 63, NUMBER 9 PHYSICAL REVIEW LETTERS 28 AUGUST 1989

that the kth term in (3) is exactly equal to analytic con-
tinuation of the sum over paths in Euclidean space be-
tween the end points with the winding number around
the origin in the (xo,x~) plane restricted to k (see Fig.
1). Clearly the total propagator is equal to the sum over
contributions of all possible winding numbers: GF(x,y)

Pk -— G$ (x,y). The zero winding term corre-
sponds to the zero-temperature Feynman propagator.

The same decomposition can be done for the case of
massive particles ' and in dimensions different from
four. The resulting propagator again has a thermal
character, which is basically due to the fact that in Eu-
clidean space Rindler coordinates are just polar coordi-
nates: The time variable is the angle variable, and is
periodic. The zero winding contribution is not equal to
the Bat-space Feynman propagator in the general case,
but describes propagation of Rin dier quanta in the
Rindler vacuum. Specifically, one can show that the k
winding contribution yields for the Euclidean propaga-
tor"

Xo

/

/!
/A

/

FIG. 1. Two paths in the Euclidean (xp, x~) plane contrib-
uting to the total propagator. Path A has winding number 0,
path B has winding number —2.

G) (r,p, x~;r', p', x~) - z d z e
'

dvK;„(xp)K;, (ap')sinh(xv)exp[ —v[(ar ar'+2m—k) ] '~ j .z' " 2z " ' 4 0
(4)

g""(x)(T„„(x))- —,
' m 'GF(x, x) . (5)

Here the expectation value is to be taken in the Min-
kowski vacuum. As it stands, (5) is ill defined, and re-
quires regularization. As we want to describe the phys-
ics of the accelerating observer, it is natural to normal

Here x (p & +m ) '~, x ~ denotes the transverse coordi-
nates, the quantity p-a '+( becomes, in the Euclide-
an (x,x') plane, the radial coordinate, and K;„ is the
modified Bessel function.

It is illuminating to make a comparison with the Aat-

space thermal propagator. Here the Euclidean time
direction is compactified to a circle with circumference
P-I/T. The total propagator also splits into contribu-
tions with definite winding, this time around the circle.
However, the interpretation of the winding terms is the
same. In fact, it can be shown that in both cases the + k
winding contributions correspond exactly to the k parti-
cle contributions to the thermal trace in the second quan-
tized expression for the propagator.

Having obtained the propagator in the above form, it
is straightforward to extract expectation values of the
stress-energy tensor. As an example, we have the trace
of the stress-energy tensor, which is given by

i
order T„„relative to the Rindler vacuum. This automat-
ically sets the energy density of the Rindler vacuum to
zero, which is clearly what we would want. It follows
form the discussion above that this normal ordering cor-
responds to dropping from the Feynman propagator the
zero winding (vacuum) contribution. In other words, we
replace in (5) GF GF —GF(

Let us return to the case of strings. We want to give a
meaning to the stress-energy tensor for a vacuum of free
strings. The most straightforward thing to do is to work
in the light-cone gauge. The string vacuum just becomes
the direct product of the vacua of all components of the
spectrum of the string. As they are noninteracting, the
value of a local quantity measured by an accelerating ob-
server just becomes the sum of the values for all com-
ponents.

To find the critical acceleration (and thus, the critical
temperature) above which the canonical variables
diverge, we recall that such a divergence is caused by
summing over the exponential asymptotic degeneracy of
the string spectrum. Consequently, the critical behavior
is controlled by the high mass end of the spectrum.
Evaluating (4) for large mass [m » a =O(1/Ja')], when
the end points of the propagator are on the world line of
the observer, one finds

G)k) (&
I [(d —2)/2] 1 m

27K' m p

~ (d —i)/2
2mp 1 (k~O).

(a~r+ 2k~) ' —~'

Now it is an easy matter to obtain the critical temperature. From (5) we see that we need to take the end points to
coincide in (6). Recall the asymptotic level density for the closed bosonic string is

d(1V) CLm exp(Pom),
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FIG. 2. Paths with the dominating contributions for winding
number zero (path A) and winding number nonzero (path B)
in the large-mass limit.

FIG. 3. "Winding string" giving rise to divergences in local
thermodynamic variables for the accelerated observer. The
distance between Q and A is p.

where Po 4+Ja' is the inverse Hagedorn temperature
defined through the singular behavior of thermodynamic
functions for inertial observers. Summing (6) with de-
generacy (7) yields a critical temperature defined
through acceleration

1 1 (8)
2jrpg 4~zj~' K

Note that the exponential dependence of (6) will carry
over to the components of the stress-energy tensor:
These merely pick up powers of the mass and the dis-
tance.

It is not hard to understand the exponential depen-
dence in (6) which is responsible for the peculiar value of
the critical temperature. In fiat space, the Euclidean
propagator for a particle with mass m between two
points at a distance r (mr»1) behaves like GE(r)
—m'r~exp( —mr) (a and P are constants irrelevant for
the present purposes). We could interpret r as the length
of the shortest path between the end points. For the con-
strained propagator the shortest path is the direct dis-
tance for zero winding number; in the case of nonzero
winding number, however, it is equal to the sum of the
radii of the end points. In the latter case the direct path
is "not allowed" (see Fig. 2).

This picture allows for an illuminating comparison
with the inertial string bath at temperature I/P. As
remarked above, in that case the thermal contributions
to the propagator wind around the compactified
imaginary-time direction S~. ' There the Hagedorn
divergence will occur when the (negative) exponent in
the winding + 1 contributions to the propagator are can-
celed by the exponential level degeneracy. The minimal
distance is the circumference P of the circle, rather than
twice the radius, as in the case of the accelerated frame.
This is the origin of the factor n in (8).

This brings us to an interesting diA'erence between the
two cases. In (6) the exponential does not depend on the
winding number k. Consequently the critical accelera-
tion is the same for all winding numbers, and thus the
divergence gets a contribution from all k, rather than

just from the k ~ 1 terms.
It has been shown that the Hagedorn divergence can

be interpreted as the temperature where a string that
winds once around the imaginary-time direction becomes
massless, and gives a diverging contribution to the parti-
tion function. ' ' Applying this interpretation to the
accelerated frame, we are led to view the critical ac-
celeration as the point where strings that wind around
the origin and pass by the observer (see Fig. 3) become
massless.

This discussion makes it clear that the occurrence of
this peculiar critical temperature is a "stringy, " nonlocal
effect. Because of the geometrical origin, the prefactor
will be universal, and extend to other string models.

It is interesting to speculate about generalizations of
the results obtained for the accelerating observer to other
models. For instance, for de Sitter space a temperature
eH'ect also arises because the Euclidean time variable is
periodic. ' More precisely, Euclidean-de Sitter space

FIG. 4. "Winding string" in (Euclidean) de Sitter space.
The transverse directions are not shown. For an observer A, lo-
cated at the equator, time translation is rotation along the N-S
axis.
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can be represented as a d sphere, and (Euclidean) time
translation is rotation along great circles. As we are
~orking in curved space here, string quantization may be
hard to carry out explicitly, but we will assume here that
it can be done consistently. If we assume furthermore
that the high-mass degeneracy will possess an exponen-
tial behavior [d(1V) —exp(Pdesjgter JN )1, a critical tem-
perature will occur as well. In analogy with the Rindler
space, we expect the critical temperature to be controlled
by the winding strings indicated in Fig. 4. From this we

may infer that the geometric factor relating the tempera-
ture associated with the periodicity of the metric (the
Gibbons-Hawking temperature) with the string critical
temperature is —,

' rather than I/z. If string theory and
the Hagedorn transition play a role in the very early
Universe, this result may be important in studying its
evolution.

One may derive similar eN'ects in any situation in

which the time coordinate is periodic in imaginary time.
%e mention, for instance, a stationary observer in a
Schwarzschild background metric. After completion of
this paper, we became aware of Ref. 18 in which the oc-
currence of a maximum acceleration is also discussed in

a somewhat different context.
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