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We show that under certain circumstances a simple quantum harmonic oscillator driven by a quantum
current evolves to unique pure states even if started as a mixed state. In various limits, these states ex-
hibit nonclassical properties such as sub-Poissonian statistics, or more interestingly resemble macroscopic

superpositions.

PACS numbers: 03.65.—w, 42.50.—p, 42.52.+x

The simple harmonic oscillator occupies a privileged
position both in classical and in quantum physics. It is
important in describing small oscillations about equilibri-
um positions and hence gives a description of many wave
phenomena. In particular, because of its one-to-one
correspondence with a single mode of the electromagnet-
ic field, it is the central paradigm of QED and quantum
optics.

In recent years, it has become possible to almost per-
fectly isolate single quantum harmonic oscillators (HO)
from their environment, and in particular from dissipa-
tion: The use of single-mode superconducting cavities
enables detailed investigations of the dynamics of this
simplest of all quantum systems.'? Such studies are
bound to yield a deeper understanding of quantum
mechanics by pushing it towards the realm of single, iso-
lated systems rather than ensembles.

It is well known that a HO at zero temperature driven
by a classical current and subject to dissipation evolves
towards a unique pure state, a coherent state.® Dissipa-
tion ensures that the initial character of the HO’s state is

p(M1) =Tr, [U(2)p; - - - Trs[U(2)p Trs [U(2) ps p(OOU T (DU (D] - - - UT ()],

where U(z) =exp(—iHt/h) is the evolution operator for
the spin-oscillator system, p; is the density matrix of the
subsequent spin- 3 particles at the beginning of their in-
teraction with the HO, Tr; is a partial trace over the spin
variables, and H is the Jaynes-Cummings Hamiltonian*

H=hoata+hoo,+hxlato-+acy). )

Here, a,a' are the oscillator annihilation and creation
operators, o,, c—, and o+ are Pauli matrices , and h«x is
the oscillator-spin coupling constant. We assume reso-
nance between the oscillator and spin frequencies. The
eigenenergies and eigenstates of H are known.* In writ-
ing Eq. (1) it is assumed that the spin- 3 density matrix
ps is identical for all spins as they start their interaction
with the HO. This implies that if p; describes a coherent
superposition of spin states, the phase of the superposi-
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transient and becomes replaced by that state which bal-
ances the gain from the classical current with the losses.
With hindsight, the fact that the photon statistics of
single-mode lasers far above threshold are nearly Pois-
sonian can be traced back to this property.

In this Letter we consider the evolution of a HO cou-
pled to a gquantum current. We show that under ap-
propriate conditions it is driven towards a new class of
pure states. In various limits these states reduce to
coherent states or to number states. More interestingly,
they can also acquire the character of macroscopic su-
perpositions. The evolution to a pure state also occurs
for mixed initial states of the HO.

The current that we consider consists of a string of
spin- 7 particles, each interacting with the oscillator for
a time 7. This is an idealized description of the excita-
tion of the single-mode superconducting cavities used,
e.g., in micromasers. "> There, the cavity mode interacts
with a low-density stream of two-level atoms such that
only one atom at a time is present inside the resonator.

After M spins, the reduced density matrix for the os-
cillator alone is given by

ey

tion must be the same for all spins. The M partial traces
in Eq. (1) express the fact that successive spins interact
with the HO for a time 7 only. Such traces are some-
times referred to as nonselective measurements:> We
know that the spins stay in the cavity for a time 7 only,
but we do not measure the state in which they exit the
resonator.
While numerically solving Eq. (2) for

ps=(ala)+B|b))(a*a| +8*b]), 3)

with |a|?+|B]2=1, |a) and |b) being the upper and
lower spin states, we found that the reduced density ma-
trix for the oscillator alone evolves towards a pure (zero-
entropy) steady state if the spin-field interaction time 7
satisfies the “trapping” condition® x(n,+1)"2z =z (n,
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integer) and the initial field excitation is limited to Fock states | m) with m <n,. An example of the final state reached
by the HO under such conditions is given in Fig. 1, together with the dynamics of its entropy S.

The evolution of the HO density matrix towards a pure state is a surprising result indeed: In general, partial traces
such as appear in Eq. (1) are expected to lead to mixed rather than pure states. What happens instead in the present
case is that the harmonic oscillator appears to benefit from a transfer of coherence from the spins.

Under the Jaynes-Cummings dynamics, the evolution of an arbitrary state of the combined oscillator-two-level atom

system is given by

Ysulmala)+818))— X splacoslk(n+1)22] | n)+iBsin(xkvnt) |n— 1)} | a)

+Y su{Bcos(xvnt) | n)+iasinlk(n +1) 2] |n+ 1)} | b). )

Trapping states® of the oscillator play an essential role in its dynamics. They are immediately apparent from Eq. (4):

If for some n=n, we have

K~N/ngt=qr, q integer,

(5a)

then the downward coupling between |nq) and |nq — 1) vanishes and the phase-space regions below and above |nq) are
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FIG. 1. (a) Modulii of the steady-state density matrix ele-
ments p.m =<{n | p| m) of the pure state reached by the harmon-
ic oscillator, for |a| 2=(0.8, n; =21, and xt=n/~/22. The sys-
tem was started from a thermal mixed state with a mean exci-
tation (n)=3. The initial distribution has been slightly trun-
cated and renormalized to avoid having any population above
the level n=21. (b) Entropy of the HO (on a logarithmic
scale) as a function of the number of spins having interacted
with it.

dynamically disconnected. We call |n;) a downward
gr-trapping state. Similarly, a state such that

x(ng+1)2r=qx, q integer (5b)

is an upward gn-trapping state. Equations (5) show that
the state immediately following an upward gn-trapping
state is always a downward g=z-trapping state. An im-
portant property of trapping states is that since they
separate the phase space of the HO into disconnected
blocks, initial conditions within one block cannot leak
into others. This is the essential ingredient in obtaining
normalizable steady-state states of the HO for arbitrary
spin initial conditions.

Since the driven oscillator’s dynamics can be handled
separately in disconnected phase-space blocks we con-
centrate on initial conditions within one block only. Un-
der more general initial conditions the HO always
evolves towards a mixed state, since the dynamics prohi-
bits the buildup of coherences between disconnected
blocks.

We proceed by noting that if the HO evolves towards
a pure state, its properties can be determined by a self-
consistency argument. We assume that the HO is in the
pure state

| )= 50 n) (6)

after interaction with a given spin, and require that it
remains in this same state (within an overall phase) after
interaction with the next spin. This requires that the
state of the composite system at time z factorizes into a
tensor product of | f) times a pure state of the two-level
atom:

| Aalad+B|b))— | )a'|ad+p'| b)) . @)

Here ¢ is an overall phase and o',8', with |a'| 2+ |B'| ?
=1, are coefficients to be determined. Combining Egs.
(6) and (7) yields two equations that must be satisfied
for all n’s. If the state of the HO is initially confined be-
tween a downward 2gr-trapping state and a subsequent
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upward (2p + 1) z-trapping state (q,p integer) this leads
to the unique solution characterized by

e’=+1, a=Fa, pB=xp. (8a)

For the case where the initial state is confined between a
downward (2q + 1) z-trapping state and a subsequent up-
ward 2pr-trapping state, we find

e?=+1, a'=+aqa, f=Fp. (8b)

No other zero-entropy steady states are possible. Choos-
ing the overall phasor exp(i¢) to be unity, Eq. (8a) can
be interpreted as a nutation of the upper-state probabili-
ty amplitude by = and Eq. (8b) as a nutation of the
lower-state probability amplitude by z. Under these
conditions the successive spins exit the cavity with pre-
cisely the same energy as they entered it with. Note,
however, that there is more than just conservation of en-
ergy involved in reaching a steady state of the HO. This
is seen readily by noting that |a'|2=]al|? |p'|?
= | 8| ? alone is not sufficient to satisfy condition (7).
Energy conservation involves only the first moment of
the state, while Eq. (7) involves all moments.

Equations (8) lead to simple recurrence relations for
the probability amplitudes s, of Eq. (6). We find readily

—; e —(a/a')cos(xv/nt)
(B/a")sin(xvn 1)

with the corresponding photon statistics

|sn|2=|a/B]2cot?(x/nt/2) | sp—1 2

Sn—1, (9)

Sp ™

(10a)
and
|5, |2=|a/B| *tan?(x/n/2) | su=1]?

for cases (8a) and (8b), respectively. For lack of a

(10b)
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FIG. 2. Solid line: Mean excitation {n) of the cotangent
state (10a) as a function of the spin excitation | a| 2. Dashed
line: Normalized second moment o=({n2) —{n)2)/(n), show-
ing sub-Poissonian statistics when o <1. Here, n; =21 and

kT =n//22.
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better name, we call these states cotangent and tangent
states of the HO. Note that the cotangent states are
clearly of most practical interest, since physically rele-
vant initial conditions typically include the vacuum state
| 0) (which is a downward Oz-trapping state).

The detailed properties of the tangent and cotangent
states of the HO will be presented in a future publica-
tion. Here, we limit our discussion to some of their most
striking features. Consider first such states bound be-
tween |0) and a n-trapping state |n;). For fully invert-
ed spins (@ =1) the system evolves precisely towards the
Fock state |n;).% For a =0, in contrast, it asymptotical-
ly reaches the vacuum state |0). For intermediate situa-
tions, the cotangent state is sub-Poissonian, as illustrated
in Fig. 2.

For interaction times short enough that xz<1/+/n for
all relevant number states in Eq. (10a), the cotangent
state reduces to a coherent state with Poisson photon
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FIG. 3. (a) Modulii of the steady-state density matrix ele-
ments pnm ={n | p| m) of the pure state reached by the harmon-
ic oscillator, for |a|2=0.3, n,=14, and xt=37//15. The sys-
tem was started from a thermal mixed state, truncated beyond
n=14, with a mean excitation {n)=1. (b) Evolution of the
HO entropy (logarithmic scale) as a function of the number of
spins.
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statistics
|sn|2=2a/Bxt|%n " |sp—1]?, a1

and mean photon number {n) =|2a/Bxz| 2 In this limit
the HO acts as if driven by a classical current. Note,
however, that the short-time condition x7<1/~/n, which
guarantees that no significant correlations develop be-
tween the successive spins and the HO, is a statement of
the semiclassical approximation’ valid for arbitrary spin
initial conditions. This is a less stringent condition than
the classical limit known to occur when spin- 5 particles
remain close to the ground state, |a| < 1.7 It is also im-
portant to realize that for arbitrary spin and HO initial
conditions, and in particular for inverted spins (a> ),
the oscillator does feel the presence of the trapping state
n; during its approach to steady state. This evolution,
which obviously takes the HO through number states
such that the condition xt<1/~+/n is not fulfilled, is a
clear indication of the importance of the *“granular na-
ture” of the HO and of quantum dynamics at play. The
steady-state limit and the limit of small interaction times
do not usually commute.

An enormous wealth of states with novel properties
can be generated when the phase-space evolution is
bounded by higher trapping states. For instance, co-
tangent states confined between the vacuum and 3rz-
trapping states acquire properties reminiscent of “macro-
scopic superpositions,” as illustrated in Fig. 3. The final
pure state shown in Fig. 3 evolved dynamically from a
thermal mixed state and the inset shows the evolution of
the HO entropy as a function of the number of spins
having interacted with it. This illustrates that macro-
scopic superpositions can indeed be generated under the
system dynamics starting from a mixed state. Such
states are of considerable current interest in investiga-
tions on the foundations of quantum mechanics and mea-
surement theory.

In conclusion, we have shown that a HO driven by a

stream of spin- § particles can evolve towards pure states
even for mixed initial states. The existence of these new
states relies explicitly on the discrete nature of the quan-
tum states of the harmonic oscillator. In various limits,
they exhibit nonclassical properties such as sub-Pois-
sonian statistics, or more interestingly resemble macro-
scopic superpositions. As such they may provide new
testing grounds for fundamental tests of quantum
mechanics and measurement theory.

We recognize that the quantum current considered
here calls for a precisely phased stream of spins, a for-
midable experimental task indeed. However, there is no
fundamental limit prohibiting the construction of such a
current. We hope that the wealth of novel quantum
states that can be studied in such systems will provide
motivation enough to attempt this experimental tour de
force.
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