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Solitonhke Structure in the Parametric Distortions of Bounded-System Energy Spectra
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Exact one-soliton and two-soliton solutions of generalized Calogero-Moser (gCM) equations are
presented. We explain how these solutions describe the origin of the successive avoided crossings ob-
served in the energy-level structure of bounded systems when a parameter is varied. A new statistical
description, based on the grand-canonical ensemble for the gCM system, is developed for the study of
the parametric properties of irregular spectra. The relationship with random-matrix theory is discussed.

PACS numbers: 03.65.—w, 05.20.—y, 31.15.+q

In recent years there has been great interest in the
properties of avoided crossings in model systems, partic-
ularly with respect to their use as a signature of non-
separability. Avoided crossings are displayed in dia-
grams where the energy spectrum of a system is plotted
versus a varying parameter such as the amplitude of an
external static electric' or magnetic field, or its frequen-

cy when the applied field is periodic, or the interatomic
distance in a molecule, or the nuclear deformation.
Successive avoided crossings along a fictive curve are
also observed in many of these diagrams, which suggests
the persistence of some property of an eigenstate after
several avoided crossings. The purpose of the present
Letter is to interpret the nature of avoided crossings
from the viewpoint of nonlinear dynamics. To make our
arguments specific, we shall consider bounded quantum
systems without any special symmetries, and with a
Harniltonian operator which depends linearly on a pa-
rameter r, H(z) Hp+ rV. The energy spectrum of the
system is assumed to be discrete, finite, or infinite.

Several recent papers have been devoted to the study
of the "motion" (i.e., change) of the eigenvalues and the
eigenvectors of H(r) when the pseudotime parameter r
varies. It has been shown that the parametric motion
is governed by the generalized Calogero-Moser (gCM)
equations, which are the canonical equations associated
with the classical Hamiltonian '
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In (1), x„ is the nth energy eigenvalue and p„ is the
parametric derivative of x„(also equal to the nth diago-
nal element of the interacting potential),
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The nondiagonal elements of V are given by
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where y„(y„+1. The eigenvalues of (2) are given by
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are the eigenvalues and the eigenvectors of the
independent operator A-i (V,Hp]. The classical Hamil-
tonian (1) describes the motion of N particles on a line.
A pseudospin P„'j, as well as a pseudocospin fg'j, is as-
sociated with each particle. The particles interact with
each other with a repulsive potential.

This system has been shown to be completely inte-
grable when the number of particles is finite. 9" Ac-
cordingly, it shares the rare feature of integrability with
the finite ideal gas, harmonic chain, and Toda chain.
Moreover, (1) reduces to the Hamiltonian for a finite
ideal gas when g' 0. When infinite extensions of their
domains are assumed, these latter systems are known to
support persistent modes of propagation. In particular,
solitons can propagate in the infinite nonlinear Toda lat-
tice. We further develop this analogy by giving here the
one-soliton and the two-soliton solutions of system (1).

While the system (1) is completely integrable, neither
soliton solutions nor the solution for given initial values
have yet been displayed explicitly. In order to construct
such solutions, we note that each solution of system (1)
corresponds to a parametric family of Hamiltonians of
the form Hp+ rV and conversely. We therefore consider
the following Hamiltonian operator (which has a long
history' ):
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the roots of the equation
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Equation (3) possesses N+1 roots {x„(r)}which gen-
erate an exact solution of the system (1). The eigenval-
ue problem for (2) is thus identical to solving the
dynamical system (1) with initial values which are deter-
mined from the roots of (3) at r 0. The energy spec-
trum is composed of N horizontal levels (i.e., indepen-
dent of r) which are crossed by one extra level with a
slope given by the parameter p. In fact, each and every
crossing is avoided. The repulsion between the levels is
controlled by the coupling parameters {u&}.' ' For
equal spacing between the horizontal levels, y„an, the
succession of avoided crossings corresponds to a soliton
propagating with a velocity p through a lattice of period
a, if the horizontal levels are extended for positive and
negative values of coordinate x. The exact one-soliton
solution is then given by the zeros {x„(r)}of
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This formula gives us the soliton profile. At a large dis-
tance from the soliton, the decrease of its profile is alge-
braic, x„(r)=an+u (an —pt) '. For the one-soliton
solution (4), the velocity of the particles is

and the matrix elements of the interaction potential V
are then
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The spin and cospin can be obtained as explained above.
The velocity (5) decreases at a large distance like

p, (r) =pu ) an —pr (
'. Accordingly, the gCM soliton

has long-range tails in contrast to the Toda soliton.
Solitons are known to collide with each other without

undergoing a change of structure. It is thus important to
construct the bisoliton solution of (1) in order to verify
this property. The family of Hamiltonian operators we
need to consider for this purpose is
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where u (u) is the coupling between the soliton level with
velocity p (q) and the lattice levels, and w is the coupling
between the two-soliton levels. The solution is now given

by the following quadratic equation in r:

(q&+b x)(pr —x)+—f(x) [u (qr+b —x)+u (pr —x)] —2uuwf(x) —w -0, (8)

with f(x)-(n/a)cot(xx/a) in the limit of infinite ex-
tension. The bisoliton solution is then given by the real
roots of Eq. (8). Figure 1 depicts an example of crossing
between two solitons, which illustrates their stability
with respect to their collision.

Because of their persistence during the avoided cross-

ings, we see that the solitons may be associated with the
diabatic energy levels as opposed to the adiabatic energy
levels (which are the energy levels themselves). Suppose
that the parameter r varies with time, and that the initial

quantum state is one of the energy eigenstates. Then the
system will remain on the initial level if the time varia-
tion of the parameter is slow. On the other hand, the
system will jump from level to level and it will follow the
diabatics if the time variation is rapid. ' This remark es-

tablishes the relationship between the different concepts
introduced in this Letter and the standard nomenclature
of quantum mechanics.

Multisolitons can be constructed by generalization of
the above procedure. When many solitons are created in

this way, the spectrum appears irregular for any 6xed
value of the parameter ~. We may then associate an ir-
regular spectrum with an ideal gas of solitons. With this

purpose in mind, we must consider the statistical
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FIG. 1. Example of bisoliton: energy spectrum of the Ham-
iltonian family (7) with parameter values p 1, q

—2,
u 0.2, v 0.3, w 0.4, a 1, b 21, andn 1,2, . . . , 12.
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mechanics of the dynamical system (1).
If the number of solitons in the dynamical system is

infinite, statistical concepts are required for its descrip-
tion. ' To construct an invariant probability measure for
the statistical mechanics of system (1), we define a
grand-canonical ensemble with a Gibbs measure given
formally by
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where H is the classical Hamiltonian (1) and N is the
number of particles. We give a mathematical meaning
to (9) by looking at the system in the finite interval
( —L/2, L/2] of the x axis. The number of particles in
this interval is a random variable with a Poisson distribu-
tion,
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where p is the mean density of levels. For a fixed num-
ber N of levels, the probability of a given configuration is
obtained by integrating (9) over the variables p„, f„', and
g„'. The result is

Pk(x~x2, . . . , xN) C~ Q ( x; xj ~, (11)
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which allows us to make a comparison with the predic-
tions of random-matrix theory. ' ' This latter theory
defines statistical ensembles of matrices to study the
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which has been used by several authors' to characterize
irregular spectra. x„ is an arbitrary level and 0 is the
Hamiltonian (1). K may have positive or negative
values. Its probability density is given by

properties of irregular spectra. The Gaussian orthogonal
ensemble, the circular orthogonal ensemble, as well as
the Jacobi and the Laguerre orthogonal ensembles, '

define configuration distributions similar but different
from (11). However, all these different ensembles lead
to the universal spacing distribution of Mehta, Gaudin,
and Dyson (rather than the Wigner distribution). ' '
Analogously, we can prove that the grand-canonical en-
semble defined by (10) and (11) leads to the same
universal spacing distribution. The proof makes use of
the properties of Legendre polynomials. In this sense we
may call the ensemble defined here the Legendre orthog-
onal ensemble. The equivalence between all these en-
sembles is a remarkable property, and deserves further
study. ' The assertion on the foundation of random-
matrix theory, which was previously based on canonical
ensemble, has now been clearer in our treatment based
on the grand-canonical ensemble.

The ensemble (9) is useful for the study of the statisti-
cal properties of the spectrum itself, and of its paramet-
ric distortions. An important parametric property of a
spectrum is the level curvature defined as
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where dM is the measure (9) and [x) (K)I are the %—1

zeros of K+8H/Bx~ 0. P(K) can be evaluated asymp-
totically for large K. We obtain
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with v-1. In general, we expect that the curvature den-
sity will decrease like (14) if the spacing density behaves
like S" (v 1,2,4) near S 0. The different universality
classes of spectra can thus be distinguished by the curva-
ture distribution, which as to be considered a parametric
property. This universality can be evaluated by numeri-
cal diagonalizataon of Hamiltonian operators, as well as
deduced from experimental data. Other parametric
properties could also be studied usang the statistical en-
semble (9), e.g. , the mean-square displacement of an en-
ergy level when the parameter is varied, or the
parameter-dependent structure function S(k, r)
These properties were studied in the Brownian-motion
model of Dyson, ' for which the present formalism pro-
vides complete justification.

Random-matrix theory is only useful for studying ir-
regular spectra when the parameter is fixed once and for
all. On the other hand, the statistical ensemble we have

defined with the parametric Hamiltonian (1) allows us to
study irregular spectra for fixed and variable values of
the parameter z. In this sense, the present theory gen-
eralizes random-matrix theory. Similar considerations
hold for quantum dissipative systems.

To conclude, we have shown the exact soliton solution
which can be observed in an energy spectrum when a pa-
rameter is varied. We suggest that the soliton descrip-
tion of parametric distortions of spectra will allow inves-
tigation of the ergodic properties of the parametric sys-
tem (1). Many tools accumulated in the field of non-
linear dynamics of solitons will be extremely useful in
this context.
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