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FIG. 2. Approximating function g(z) for the function in

Fig. 3, corresponding to the first iteration of Eq. (1).

(b)

The principal point we make in this Letter is that, at
least for functions of two variables for which we have al-
ready implemented the procedure, the approximation
works surprisingly well with a few iterations of Eq (1)..
The extension to more variables is straightforward. The
criteria of goodness we are using are (1) the overall
geometrical appearance of the reconstructed function,
(2) the relative norm, Ok, of the error committed at the
kth step, and (3) the local shifting of the extrema.

To clarify our observations, we illustrate with a graph-
ical numerical example for s 2 in a number of figures
below: Figure 1 shows, qualitatively, the appearance of
the embedding (2). In Fig. 2 we show a typical approxi-
mating function g(z) (the one which corresponds to the
first iteration in Fig. 3). In Fig. 3 we present the geome-
trical appearance of an arbitrarily chosen function and
the reconstructed pictures after one and five iterations of
the procedure. We input the analytical expression for a
superposition of truncated Gaussians. In general, it is
enough to input a numerical table of values (which could
be measured data points) provided it is extensive: The
values at the centers of the elements of the (2s+I)
shifted partitions have to be provided.

%'e note the following:
(1) Convergence of this method of approximation is

amazingly quick, as can be seen in Fig. 3. (The norms of
the errors are given in Table I.) That makes the pro-
cedure of practical interest.

(2) We stress that the information on the "target"
function is contained in the g's. The p's and X's are
universal and, although the computation of the p's is
tedious and time consuming, it has to be done only once.

(3) The rank to which the partition of the domain has
to be refined is determined by the rate of oscillation (see
Ref. 4) of the target function on the smallest squares.
Three refinements suKce for the functions we have ex-
amined.

(4) The outcome of the approximate representation is
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FIG. 3. Overall geometrical view of (a) a sum of truncated
Gaussians f(x,y) and (b) its first f ' (z,y), and (c) fifth

fi i(x,y) representations through iterations of Eq. (1). The
values of the relative norms of the errors are 01 =0.669 in (b)
and 8q 0.1336 in (c).

a uniform magnification (which is then reduced and ad-
justed through sequential iterations) on top of which a
local shifting occurs. This makes the approach, already
at its erst step, especially suited for A.nding global extre-
ma among multiple ones.

To locate immediately the global extremum of a func-
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TABLE I. Location of global extrema for the function in

Fig. 3, and the one given by Eq. (3) as obtained from the first
iteration of the procedure.

Exact From g(z)

Global maximum for the x,„
function in Fig. 3 &max

0.2
0.2

0.193
0.193

0.035
0.035

Global minimum for
the function in Eq. (3)

Xmin

&min

0.0
0.0

0.01
0.01

0.01
0.01

tion of several variables (the maximum in the two-
dimensional example below) one need only examine the
approximating g(z) at the first iteration of Eq. (1). The
shape of the g(z) will be similar to the one depicted in

Fig. 2 with a number of cumulations of lines equal to
2s+1 for s variables. One finds the global maximum of
g(z) at each cumulation at, say, zs '" by ocular inspec-
tion (it is detected as the highest line). The scale on the
z axis must be conveniently expanded around those max-
ima. One then obtains the coordinates in the original
space via the inverse of Eq. (2). This locates the max-
imum up to an error of the order of the refinement of the
working partition. Any other local procedure could in-

crease the accuracy. To illustrate this we have obtained
the location of the maximum from Fig. 2 as the average
of zo '" to z4 '" by the inverse of Eq. (2). These are com-
pared with the exact values in Table I where e is the rel-

ative error.
We treat the black-white intensity of image data as a

continuous function of two variables defined constant
over each pixel (that is, a superposition of Heaviside
functions). The encoding of this information as a one-
dimensional function can be done via g(z) from Eq. (1).
This also makes it easier to identify and recognize pat-
terns.

We tested the global-extremum-finder method through
the single-variable representation in another two-variable
example which has been recently studied, s 6

f(x,y) -ax +by +ccos(yx)+dcos(by),

a, b &0, c,d (0.
The representation is not essential here because (3) is al-
ready a sum of functions of one variable. Nevertheless,
our method locates the global minimum in a few seconds
of CPU time on a VAX 8650, as we show in Table I.
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