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Routes to Chaotic Scattering
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The onset of chaotic behavior in a class of classical scattering problems is shown to occur in two possi-
ble ways. One is abrupt and is related to a change in the topology of the energy surface. The other
arises as a result of a complex sequence of saddle-node and period-doubling bifurcations. The abrupt bi-
furcation represents a new generic route to chaos and yields a characteristic scaling of the fractal dimen-
sion associated with the scattering function as [1n(E, E) '] ', fo—r particle energies E near the critical
value E, at which the scattering becomes chaotic.

PACS numbers: 05.45.+b, 03.20.+i, 03.65.Nk

We consider a classical dynamics scattering problem
for a potential V(r) ~ 0 with lim~, [ V(r) =0. It has
recently been found that the outgoing trajectories (i.e.,
the trajectories after scattering) can have very compli-
cated behavior as a function of incoming trajectories and
that this results from the presence of chaotic dynamics
on a fractal set in the phase space. ' Examples where
this chaotic scattering phenomenon is important include
chemical reactions, fluid dynamics, the three-body
gravitational problem, and others. In addition, there
are striking consequences of chaos in a classical scatter-
ing problem for the corresponding quantum problem.

As an example, consider the two-dimensional potential
V(r) x y exp[ —(x +y )]. (This potential has
square symmetry with four hills of equal heights E
-e located at x +'1 and y ~ 1.) Figure 1 shows
the asymptotic (for large ~

r ( ) scattering angle
(cosp—:xo p/ ~ p ~, where p is the momentum) versus im-

pact parameter b for particles incident in the direction
parallel to the x axis. In Fig. 1(a) we see that the
scattering function is a smoothly varying curve when the
energy E 1.626E . For E 0.26E, however, the
scattering is chaotic, and we see that the scattering func-
tion behaves wildly in certain regions [Fig. 1(b)] and
that this wild behavior apparently persists on arbitrarily
small scale [see the blowups in Figs. 1(c) and 1(d)]. In
fact, s for E/E 0.260, the scattering function is singu-
lar on a fractal set of impact-parameter values (the frac-
tal dimension of this set is d =0.67 for this case ).

The relevant point here is that the scattering is regular

for large E [Fig. 1(a)], but is chaotic at smaller E [Fig.
1(b)]. This is a very general feature of such problems.
It is the purpose of this paper to investigate the possible
"routes" to chaotic scattering. That is, how does chaos
come about as the energy is continuously lowered? In
our discussion it will be useful to distinguish what we
call fully developed chaotic scattering. We use this term
to denote a situation in which all periodic orbits are un-
stable and there are no Kolmogorov-Arnol'd-Moser
(KAM) surfaces (i.e., the dynamics is hyperbolic). The
general question of how chaos comes about has been ex-
tensively investigated for attractors, and has resulted in a
number of often observed "scenarios" including period
doubling, intermittency, crises, etc. Here we obtain the
first answers to the question of how fully developed
chaotic scattering arises. For the general class of two-
dimensional scattering problems we consider, we find
that fully developed chaotic scattering can appear in two
possible ways depending on the form of the potential. In
one of these transitions, the bifurcation is abrupt in that
the scattering is regular for E greater than a critical
value E„but there is fully developed chaotic scattering
as soon as E decreases through E,. Also the number of
unstable periodic orbits is some finite small value (zero
or one in our examples) for E)E„but then jumps to
infinity for E (E,. [Chaos implies the presence of an
in6nite number of unstable periodic orbits such that the
number of orbits with period less than some value T in-
creases exponentially with T as exp(ST), where S is the
topological entropy ]We cal.l this an abrupt bifurca-
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FIG. 1. Plot of deAection angle p vs impact parameter b:
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(a) E =1.626E; (b) E 0.260E; (c) and (d) are blowups of (b).

roon to fully developed chaotic scattering, and we show
that the fractal dimension in the scattering data has a
characteristic nonanalytic scaling with energy for E near
E,. In contrast, for the second type of transition which
we discuss, the creation of periodic orbits involves a se-
quence of saddle-node bifurcations and this implies the
presence of KAM surfaces initially surrounding the
stable nodes. In this case, when chaotic scattering first
appears, it is not fully developed, but then becomes fully
developed as E decreases further.

As background for our analysis, we now review the
relevant facts concerning scattering from a single circu-
larly symmetric monotonic potential hill. Figure 2 shows
trajectories incident on such a hill for E)E (where
E is the maximum of the potential). As is evident from
the 6gure, as the impact parameter decreases from large
values, the angular deflection 6rst increases, reaches a
maximum angle p &90', and then decreases. Further,
it can be shown that p increases as E decreases toward
E reaching a limiting value of p -90' at E E
+0+. (For E & E, p~ 180, since the orbit with zero
impact parameter is backscattered. )

The analysis and arguments are facilitated by assum-
ing that the potential V(r) consists of three hills whose
separation is large compared to their widths. (These as-
sumptions should not aff'ect our main conclusions. 6) We

label these hills 1, 2, and 3 and denote the potential max-
ima at the hilltops by E i, E z, and E 3, respectively,
where, by convention, E 3~ E 2~ E i. We further as-
sume that the potential for each isolated hill is monotoni-
cally decreasing from the hilltop (with a generic quadra-
tic maximum) and that the potential is locally circularly
symmetric about the hilltop. We distinguish two cases.
Case 1 is shown in Fig. 3(a), and case 2 is shown in Fig.

!

2—1 0 1

X
FIG. 2. Trajectories incident on a circularly symmetric po-

tential hill for E )E
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2 2 FIG. 4. Sketch of two possible orbits connecting hill 2 and
hill 3 for case 2.

FIG. 3. Sketch illustrating two possible cases for three un-
equal hills. (a) Case l and (b) case 2.

3(b). In case 1 [Fig. 3(a)] the hill of lowest maximum
energy (hill 1 with maximum energy E 1) is outside the
circle whose diameter is the line joining the two hills of
larger maximum energy, hills 2 and 3. In case 2 [Fig.
3(b)] hill 1 is inside this circle. (In both cases we
presume that hill 1 is far from the circle in comparison
with the width of a hill. )

Consider case 1. Say E & E z ~ E 3 and assume that
our orbit is deflected from hill 2 (or hill 3) and travels
toward hill 1. In order for this orbit to remain trapped it
must be deflected back toward hill 2 or hill 3. Since hill
1 lies outside the circle, the minimum required deflection
angle p ~ is greater than 90'. Thus, recalling the result
for a single hill, we see that for E & E ~ there are no
bounded orbits reflecting from hill 1. Consequently, the
only periodic orbit that can exist is the one bouncing
back and forth between hills 2 and 3. Thus there is no
chaos for case 1 when E & E ~. When E drops below
E &, chaos is immediately created, since now the number
of unstable periodic orbits increases exponentially with
period: We can represent the periodic orbits as a se-
quence of symbols representing the order in which each
hill is visited, and any sequence is possible. Thus, for
case 1, we have an abrupt bifurcation to fully developed
chaotic scattering. Note that the abrupt creation of
chaos as E decreases through the critical value E, -E
is accompanied by a change in the topology of the energy
surface: For E &E ~ a forbidden region [V(r) &E],
where orbits cannot penetrate, is created about the max-
imum of hill 1.

Now consider case 2 shown in Fig. 3(b), with energy
in the range E ~ &E &E q~E 3. As E is decreased
from E q to E ~ the maximum deflection hill 1 is cap-
able of producing, p 1(E), increases monotonically from
some value p ~(E~,) &90' to p ~(E 1) 90'. Let p ~
illustrated in Fig. 3(b) denote the deflection required by
an orbit incident on hill 1 from hill 2 (respectively, hill
3) to be reflected toward hill 3 (respectively, hill 2).
Now, however, since hill 1 is inside the circle, p + & 90 .
We can now distinguish two subcases within case 2.
Case 2(a): E~~ is small enough that P ~ & Pm|(Emq).
Case 2(b): p ~ & P~~(E~z).

In case 2(a), as E decreases, p 1 will increase until at
some value E E e &E ~, we have P ~ /~i(E~e).

For E
~
&E&E + we can have orbits traveling back

and forth between hills 2 and 3 in two ways: Either the
path between hills 2 and 3 can pass through the region of
hill 1 or it can bypass hill 1 going directly between hills 2
and 3. This is illustrated schematically in Fig. 4. Thus
we expect that for E below (but not too close) to E +
there will be unstable periodic orbits made up of all pos-
sible combinations of the two types of paths between hills
2 and 3 shown in Fig. 4. In this case we can represent
the periodic orbits by all possible periodic sequences of
two symbols (for the two types of elementary paths), and
fully developed chaos is therefore present. The way in
which this situation arises in this case is very different
from what we have for case 1 and is not an abrupt bifur-
cation. In particular, as E decreases, producing chaos,
there is no change in the topology of the energy surface.
How can the inflnite number of unstable periodic orbits
necessary for chaos be created in this case? In the
abrupt bifurcation it is the change in the energy surface
topology that occurs when E passes through one of the
E; which creates the inflnity of periodic orbits. In the
absence of such a change in topology, the only mecha-
nisms available for the creation of unstable periodic or-
bits are the standard generic bifurcations of smooth
Hamiltonian systems with two degrees of freedom:
saddle-node bifurcations and period-doubling bifurca-
tions. Note that due to the flnite width of the hills the
transition to fully developed chaotic scattering near
E=-E + is not sharp. Thus as E decreases through a
range near E +, there must be an intricate sequence of
saddle-node bifurcations and period-doubling cascades.
This type of sequence of events has been discussed in
Ref. 9 for the dissipative case. Note that, in a saddle-
node bifurcation for our Hamiltonian system, the nodes
are stable elliptic orbits surrounded by KAM tori. As
the energy is further lowered, we expect all stable elliptic
orbits created in saddle-node bifurcations to be destroyed
and replaced by unstable orbits via the mechanism
whereby the nodes undergo period-doubling cascades.
When the process is completed all periodic orbits are un-
stable (fully developed chaotic scattering), and follow
all possible sequences of the two types of paths shown in
Fig. 4. Numerical investigations con6rming this phe-
nomenology will be reported elsewhere. '

In case 2(b), as soon as E drops below E q we have a
transition to fully developed chaotic scattering. This
arises, since for any energy E & E ~ ~ E 3 we can have
reAections from hills 2 and 3 at angles up to 180, and,
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which was used for Fig. 1. A proof that this potential
undergoes an abrupt bifurcation to fully developed
chaotic scattering at E, E is given in Ref. 6. Figure 5
shows plots of the fractal dimension d versus energy E.
In Fig. 5(a) the energy scale is linear, and we note a
sharp drop of d to zero at E -E as would be predicted
by the dependence in Eq. (1). Figure 5(b) shows the
same data for d plotted versus [ln(E —E) '] '. The
result is an approximately linear behavior of d consistent
with Eq. (1).

In summary, we have shown that, for a broad class of
problems, fully developed chaotic scattering can come
about in two ways. One of these transitions, which we
call an abrupt bifurcation, leads to a characteristic scal-
ing of fractal dimension with particle energy [Eq. (1)].

This research was supported by the 0%ce of Naval
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(Basic Energy Sciences).
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FIG. 5. Fractal dimension d vs energy. (a) Linear scale in

energy. (b) Same data as in (a) plotted vs [ln(E E) ']—
in addition, because P ~ & p t(E) for E & E 2, there
are two possible paths between hills 2 and 3 (Fig. 4).
Thus, for case 2(b), we have an abrupt bifurcation to
chaotic scattering at E E, -E 2.

We now discuss a quantitative characteristic feature of
the abrupt bifurcation to fully developed chaotic scatter-
ing. In particular, we ask how does the fractal dimen-
sion d of the set of singular impact-parameter values in p
vs b plots [such as Fig. 1(b)] scale with the energy of the
incident particle? In Ref. 6 it is shown analytically that
d has a nonanalytic behavior near the critical energy E,
which is of the following form:

d —[ln(E, E) ']—
for E & E,. As an example, we consider the square-sym-
metric, four-hill potential V(r) x y exp[ —(x +y )]
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