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We obtain a hierarchy of effective Hamiltonians which allow for a unified treatment of the fractional
quantum Hall effect and a gas of fractional-statistics particles (anyons) in two dimensions. Anyon su-
perconductivity is the analog of the fractional quantum Hall effect. For a rational statistics parameter
a, P/Q with PQ even, Q anyons bind forming a charge-Qe superfluid.

PACS numbers: 74.65.+n, 73.50.Jt

Two-dimensional (2D) particles with fractional statis-
tics, called anyons, were first introduced and studied by
Wilczek in 1982.' Under exchange the anyon wave
function acquires a phase factor e' ' with the statistics
parameter a, noninteger. A physical realization of
anyons was provided by the quasiparticles in the frac-
tional quantum Hall effect. More recently, Laughlin
has argued that anyons may be playing a role in high-
temperature superconductivity. Indeed, a particular
mean-field treatment predicts that a gas of noninteract-
ing semions (a, 2 ) will pair up and be superconduct-
ing. This result is also supported by recent numerical
calculations on small systems.

In this Letter, we generalize a duality transformation,
applied previously to 2D bosons, to study the properties
of an anyon gas. Specifically, starting with a lattice
anyon Hamiltonian, a hierarchy of effective Hamiltoni-
ans with the same low-energy long-wavelength physics is
obtained by successive duality transformations. As a
check on this approach, we consider first the fractional
quantum Hall effect (FQHE). The FQHE hierarchy
emerges in one-to-one correspondence with the hierarchy
of Hamiltonians. Properties of the FQHE state can be
calculated straightforwardly from the corresponding
effective Hamiltonian. We find an incompressible liquid,
quantized Hall conductivity, fractional-statistics quasi-
particles, off-diagonal long-ranged order (ODLRO),
etc.

For the anyon gas an analogous hierarchy of possible
states is likewise obtained, with statistics parameter ex-
pressed in the continued-fraction form

a, =

A massive mode signifying a bound state of Q anyons
and corresponding flux quantization with flux h/Qe. (iii)
Vortices in the superconducting order parameter which
interact logarithmically. (iv) A nonzero Hall conductivi-
ty o ~. These results are consistent with recent works by
Fetter, Hanna, and Laughlin and Wen and Zee. In
contrast to the ODLRO in the FQHE state, anyon su-
perconductivity survives for nonzero temperature, T~O.

An anyon Wigner crystal state is also possible. For
given interanyon interaction strength, our approach can-
not ascertain the relative stability of the Wigner crystal
and superconducting phase, but guided by the FQHE we
expect superconductivity to be favored with short-ranged
interactions and for lower levels in the hierarchy. '

First consider a rotor Hamiltonian describing bosons
hopping on a 2D square lattice (h -c -e - I): H~
=H~, +0~ „with

0& g
~ r ) icos(A~/) p 2KAop),

r, a

2 g(N~, —p~)u~(r —r')(N~ „—p~),

(2a)

(2b)

where N ~, the Bose number operator, is conjugate to the
phase p~,

.
l&~,N~l -i Here u. ~(r) is a repulsive interac-

tion between bosons ie.g. , u ~(r) —e /r] and the compen-
sating positive-charge background per site, p~, is taken
much less than 1. The vector potential Ao, correspond-
ing to an applied magnetic field, couples to the lattice
derivative, h, p&,, —= p& „+,—p~ „with a = (x,y).

In order to describe anyons (or fermions) flux tubes
are attached to each boson. " In (2a) we put Ao Ao
+a&, with the statistical gauge field satisfying the con-
straint

pi+
1p2+0 ~ 0 +

pn
(Vxa~)~ g N~ „,4 reR

(3)

with p; =0, ~2, ~4, . . . , and i =1, . . . , n. All ration-
als with PQ even can be written in this way. Calculating
with the effective Hamiltonian we find a (T =0) state
with the following properties: (i) A nonzero superfluid
density, associated infinite longitudinal conductivity, o.„,
and corresponding collective (massless) sound mode. (ii)

and V at 0. Here (Vxa~)~ denotes a directed sum
around the plaquette whose center is a dual-lattice site
R, and r E R denotes the four nearest-neighbor real lat-
tice sites to R. The statistics parameter a, is an even in-
teger for bosons, an odd integer for fermions, and nonin-
teger for anyons.
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In Ref. 6, we showed that the boson Hamiltonian H~,
when Ap a~ 0, was isomorphic to a dual model
describing (2+ 1 )-dimensional (noncompact) scalar
quantum electrodynamics (QED). The mapping to
QED required a softening of the integer constraint on
the eigenvalues of N~. Consequently, the dual model
contains some effective parameters which cannot be re-
lated quantitatively to those in (2). Nevertheless, the
system's qualitative features, such as the long-wave-
length, low-energy structure of the phases, should be de-
scribed correctly by the effective dual Hamiltonian.

Under duality the original boson number operator N~
(VxA~), where A~, the QED gauge 6eld, lives on the

links of the dual lattice. The QED matter field, which
lives on the sites of the dual lattice, is represented by a
new boson number operator N2 and associated conjugate
phase pz. Generalizing the duality to include both Ap
and a~ results in an effective Hamiltonian H2 H2,
+H2 g+H2 With

H2, - "' g ~II, ~ ~'+H, „(N, -vxA, ),
R

(4a)

where II~ is the momentum conjugate to A& (V. A& =0 is
assumed),

H2tt2 , X cos(~at'2, R 2&+ I, .R) t
R,a

(4b)

In (4c) the 2D lattice Green's function G(R) ——2xlnR
for large R and the operator

pz& (VxAp)~ g (VxA])„.
4 reR

(4d)

The operator N2 in (4c) represents a vortex in the
original boson field. As in the classical Coulomb-gas
description of a boson film" these vortices interact loga-
rithmically with one another. Since N2 does not com-
mute with p2, though, (4) represents a quantum 6eld
theory for this "charged" vortex plasma. The neutraliz-

ing background, which determines the number of vor-

tices, is set by the effective magnetic 6eld felt by the bo-
sons, pq in (4d), which is a sum of the physical and sta-
tistical magnetic 6elds penetrating a lattice plaquette.
The collective longitudinal sound mode of the boson sys-
tem H& is described by (4a) (the photon in QED). The
vortex hopping term (4b) couples together the bosons
and vortices, and tends to make VxA~ quantized in in-

teger units: This correctly accounts for the discreteness
of the boson number N ~.

Consider the first hierarchy FQHE for fermions (with

a, an odd integer). When the density of electrons (N&)
(VxA)) is a (filling) fraction v-1/a, of the applied

magnetic 6eld Bp, the effective magnetic field (4d) felt

by the N& boson vanishes on average. This implies, in

Q2
H2, X (N2, R p2, R)G(R R')(N2, R'—p2, R') .

R,R'

(4c)

turn, (Nq)-0. At this special filling, if the vortex hop-
ping t2 is small compared to u2, one expects that positive
(N2 +1) and negative (N2- —1) vortices should bind
forming a "vortex insulator" with a gap. This corre-
sponds to the FQHE state' (see below). In this repre-
sentation, the order parameter for the FQHE
[(exp(ip~)) in (2)] becomes a "disorder" parameter for
the vortex insulator.

The existence and properties of the FQHE state can
be demonstrated explicitly by setting the hopping t2=0,
solving for the properties of the resulting quadratic
Hamiltonian, demonstrating a gap for N2 = + 1, and ar-
guing that this gap survives small nonzero hopping. For
t2=0 eigenstates of H2 can be expressed as a product

~
[N2])S ( +z), yielding for a given set of integers iN2]

an effective Hamiltonian H2([N2]), which is quadratic
in A~. With [N2~j =0 the resulting spectrum is mas-
sive:

co(k) =[(2tta, u )'+u)(k)u2k']' '

corresponding to incompressible density fluctuations
[b(V x A& )].

Static Laughlin quasiparticles can be formed by
choosing a nonzero set of IN2], with +1 ( —1) corre-
sponding to a quasiparticle (quasihole), and letting the
fermion density VxA~ distort to 6nd the ground state of
H2([N2]). With the [N2] constrained in this way one
finds a ground-state energy

E(/N2] ) =
2 g N2 g V(R R')N2 g, — (s)

R,R'

with a repulsive interaction V(k) (1/a ~)u ~ (k) for
small wave vector k. Since V(R 0) )0, there is indeed
a quasiparticle gap, thereby justifying our setting t2-0
in the FQHE state. At large separations the quasiparti-
cles interact with the same functional form as did the
original fermions in (2b), but with a fractional charge
1/a, . The origin of this fractional charge can be inferred
directly from (4c) and (4d): Since G(k) —1/k2, the
combination N2 —

p2 must vanish for small k, so that a
site R with N2tt 1 will necessarily be dressed by a
cloud of fermion density (V xA& ) with integrated charge
1/a, . This charge cloud implies in turn fractional statis-
tics3 for the dressed quasiparticle. Indeed, when two
static, but dressed, quasiparticles are interchanged adia-
batically using the vortex hopping term (4b) they "see*'

each others fractional charge dressing as a gauge 6eld
A~ corresponding to 1/a, of a magnetic flux quantum.
Since a bare N2 is a boson this implies 1/a, statistics.

The conductivity tensor a,p at T =0 follows by
evaluating the correlation function

a, (ico) =(A~ (k=0, co)Jf(k =0, —co))

in the ground state of the quadratic Hamiltonian
Hp(F2=0]). Here r (co) denotes imaginary time (fre-
quency) and Jf = —ie,~8,(h~&2 —2+A~&) is the fermion
current operator, obtained from the duality mapping by
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differentiating the imaginary-time action with respect to
Ao. Upon expressing 8,$2 in terms of A~ and Nq using
8,&2-[&2,H2], a simple Gaussian integral (over A~)
yields the expected result a,p

= (1/a, )e,p.
A simple physical understanding of a„» quantization

follows readily from the Hamiltonian H2. It is apparent
from (4c) and (4d) that the statistical flux tubes will
tend to induce a, (an odd integer) negative vortices near
each fermion whereas the applied magnetic field creates
an equal number of positive vortices. In the FQHE state
these positive vortices bind to the negative ones (creating
a vortex insulator), thus effectively binding to the fer-
mions. More generally, for filling factors v =P/Q satis-
fying the hierarchy condition, one can show that P fer-
mions bind with Q vortices. The binding of vortices to
fermions in the FQHE state was pointed out a number of
years ago by Halperin. ' As noted recently, s the bound
composite object effectively undergoes Bose condensa-
tion. The associated order parameter, (exp(ip~)) in (2),
can indeed be shown to be nonzero in the FQHE state.
Within this picture, quantization of o.„~ is a direct conse-
quence of the Josephson relation: For given fermion
current I, the resulting vortex current I/v induces 2n
phase slips (in p~) causing a transverse voltage VH =I/v.

To obtain the FQHE hierarchy we iterate the above
mapping. First, tie flux tubes to the vortices N2 in (4)
with an even integer, p~, of flux quanta. This preserves
the bosonic character of N2, allowing a second duality
mapping to be performed. An effective Hamiltonian is
thereby obtained with the form

H3 H2 +H3 +H3 t+H3

Here the last three contributions are identical in form to
(4a)-(4c), but with all subscripts increased by one,
r~R, and the statistics angle a, replaced by an even in-

teger p~. Note that the vortex number operator is N2
(VxA2) under this second mapping. This procedure

can be further iterated obtaining, for general n, a Hamil-
tonian H„H2, ,+ +H„,,+H„,&+H„,„, which is a
function of operators p„, N„, and A~, . . . , A„—i. For n

odd (even) matter 6elds e "live on the sites of the r (R)
lattice, whereas gauge fields A„ live on the links of the R
(r) lattice.

The allowed 6lling fraction v for the nth level of the
FQHE hierarchy can be readily obtained by inspection
of H„~i. The ratio of the magnetic 6eld strength Bo
-VXAD to the fermion density pi-(VXAi) must be
chosen to obtain a zero neutralizing background density
for the N„~ ~

"particles, " enabling a paired insulator to
form. For example, for the second hierarchy this condi-
tion implies that pi p~&VXA2& and &VxA2& Bo—a,p~.
Eliminating (VXA2) yields v ' a, +1/pi. Properties
of the associated FQHE state can be obtained from
H +i by putting OV„+~} 0 and turning off the hopping
t„+~. The resulting Hamiltonian is quadratic (in

A~, . . . ,A„) and relevant correlation functions can be

readily computed.
To apply the hierarchy of effective Hamiltonians to

study the anyon gas, we set the external magnetic 6eld to
zero and consider noninteger a, . With VXAo 0, the
neutralizing background (p2& in H2 in (4d) does not van-
ish for any a, . However, in the effective Hamiltonian
H3 in (7), the neutralizing background, (p3) (V x A&)—p~(V &A2), for the N3 particle vanishes provided that
(VXA~) pi(VxA2), with p~ an even integer. Since the
H3, term in (7) requires (VXA2& a, (V X A&), this con-
dition is satis6ed for a, 1/p~.

Thus for statistics parameter a, I/p~ the neutraliz-
ing background for the N3 particle vanishes and, as in
the second hierarchy FQHE, a paired insulator of the N3
bosons should result (for small t3). The properties of the
resulting anyon state can be deduced by setting the N3
hopping, t3, to zero, precisely as in the FQHE.

With t3 0, the eigenstates can be expressed as ( fN3}&
S

~ @~,~,), so that for a given set of JN3} an effective
Hamiltonian H2(/N3}), quadratic in the gauge fields
A~, A2 is obtained. The ground-state energy E(fN3}) of
H3( IN3}) gives the effective interaction between the N3
particles. We find

E(fN3}) 2 g(a, u2u3/u23)G(r r')N3„N3, —, (8)
r, r'

where u23-a, u2+u3. Since G(r) is repulsive, config-
urations with nonzero fN3} are separated by an energy
gap from the N3 vacuum: The phase with t3=—0 will
thus survive small nonzero hopping. Moreover, proper-
ties of the phase can be deduced with t3 0.

When tN3 „} 0, the eigenspectra of H3(F3} 0)
consist of a gapless longitudinal sound mode A~ ~ with
long-wavelength dispersion,

co&,q [u(($)u2u3/u23j '
I q I

and a massive mode with frequency to2~ =2nu23/~ a, ~.
For short-range repulsive interaction between the
anyons, the sound mode is linear, co&(q) —~q(. This is
suggestive of superfluidity.

Superfluidity of the anyon-gas ground state can be
confirmed directly by calculating o;~. Evaluating (6) in

the ground state of H3(fN3}) (noting that N2 VXA2)
yields

( )
K (9)

EN Q23

The 1/co pole indicates a nonzero superfluid density. In
contrast to a conventional superfluid, though, we find a
nonzero o„»(co 0)-a, u2/u23, which is allowed since
the anyon gas is not time-reversal invariant. Because of
the 1/to pole in (9), though, the Hall resistivity p„» van
ishes at m 0.

We can deduce the number of anyons in the composite
boson responsible for superfluidity in (9) by examining
the flux quantization in an applied magnetic field. First,
we identify the logarithmically interacting N3 particles
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with vortices in the anyon superconducting wave func-
tion. In an external magnetic field, VxAo, "charge neu-
trality" in H3 implies (Ns) Pt(VXAo), i.e., a magnetic
flux of hc/p&e per N3 vortex. Flux quantization with

hc/p~e implies, in turn, that p& anyons have bound and
Bose condensed. (The massive mode, with frequency
roz q, is a direct indication of this. ) For semions the con-
densate boson is made from two anyons, as predicted by
Laughlin.

For anyons with statistics parameter a, el/p~, it is
necessary to go further up the hierarchy to find a vanish-
ing neutralizing background density. By doing so one
can construct a hierarchy of anyon superconducting
states, analogous to the FQHE hierarchy. We find that
for a, (—:P/Q) satisfying the continued-fraction expan-
sion in (1), a charge-Qe superfluid state can form, with

Q anyons binding to form the condensate boson and flux
quantization with flux hc/Qe. The hierarchy of a, in (1)
is the same as the hierarchy for the filling v in the boson
FQHE. Note that both even and odd Q are allowed by
(1), although PQ must be even.

Since the vortices in the anyon superconducting wave
function interact logarithmically [see (8)], anyon super-
conductivity should survive at T&0. This should be con-
trasted with the FQHE state, which loses ODLRO (and
power-law order) at any T~O due to unbinding of the
(Nq) vortices in (5), which have a finite (not infinite)
pair-breaking energy. As T is raised the anyon super-
conductor will presumably undergo a Kosterlitz-Thouless
vortex-unbinding transition" into a normal phase.
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