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We present a simple recursive iteration of the leapfrog discretization of Newton's equations which
leads to a removal of the finite-step-size error to any desired order. This is done in a manner that
preserves phase-space areas and reversibility, as required for use in the hybrid Monte Carlo method for
simulating fermionic fields. The resulting asymptotic volume dependence is Vexp[(lnV) '~']. We test
the scheme on the (2+ l )-dimensional Hubbard model.

PACS numbers: 05.50.+q

The past few years have seen an intense eAort to de-
velop better fermion Monte Carlo algorithms. It is prob-
ably fair to say that at this point in time algorithms
based on the discretization of a difI'erential equation,
such as the original microcanonical algorithm, ' the
Langevin equation, hybrids of the previous two, ' and
finally the hybrid Monte Carlo algorithm, are the clear
front runners and are the most widely used. We will

refer to such algorithms as global algorithms since one
step of the algorithm consists of an update of the entire
lattice. Among the above algorithms the last one is
unique in that it is also exact.

Any discretization scheme used for numerically in-

tegrating a diA'erential equation will introduce finite-
step-size errors. In this Letter we are concerned with the
systematic cancellation of such errors. We have in mind
mostly the hybrid Monte Carlo algorithm of Ref. 5,
where a final acceptance step makes the algorithm satis-
fy detailed balance exactly. In this approach any reduc-
tion of the step-size error will help increase the final ac-
ceptance probability. However, much of what we say
equally well applies to the approximate methods, where a
smaller error amounts to smaller violations of detailed
balance. Our presentation closely follows a previous
work by one of us, both in notation and philosophy. For
another scheme for constructing higher-order algorithms
we refer the reader to the paper by Kennedy.

Let us quickly recall how the hybrid Monte Carlo al-
gorithm works. We are interested in generating a proba-
bility distribution

p (~) —S(A)

for a bosonic field A(x) described by an action S. Fer-
mionic fields are assumed to have been integrated out,
giving an action which is slow to calculate; this favors
global algorithms where 5 need be calculated only once
per sweep of all lattice variables. Consider the classical

Hamiltonian

and a discretization T(8'): (A,p) (A', p') of Hamil-
ton's equations. The momentum p is a Gaussian random
variable of unit width and 6' represents the step size.
Then, as long as T(6) is both reversible in the sense

and area preserving,

(dh, dp) =(dA', dp'), (4)

will exactly satisfy detailed balance and hence the sys-
tem will approach the desired probability distribution.
After each accept or reject step the momenta are re-
freshed with new Gaussian random variables. Since the
algorithm is a global one, for large systems the change in

energy (5) will be proportional to the volume, resulting
in a possibly very small acceptance rate. Were we able
to follow the classical trajectory exactly the acceptance
would be unity because of energy conservation. We are
therefore led to search for accurate discretizations of the
equations of motion while maintaining the reversible and
area-preserving properties. In addition, we require as lit-
tle overhead as possible over the standard "leapfrog" ap-
proach. In particular when fermions are involved we
want to keep the number of matrix inversions to a
minimum.

To prepare for later developments we begin by rederiv-
ing the leapfrog method in a way which can be general-
ized. Consider the two transformations on phase space

(6a)

simply accepting a step of the entire lattice under T with
probability

p [i H(p, A) —H(p', A')]
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and

(6b)

Since we are only interested in the leading error, we set
6~ and 62 to 0 in the last two exponentials, thus obtaining

Here —5'(A) is the classical force. Both transforma-
tions are reversible and area preserving in the sense of
Eq. (3) and Eq. (4); indeed, they are canonical transfor-
mations" with generating functions F2 =p'A+p' /2 and
p'A —S(A), respectively. The combined transformation
T~ Tq is not reversible in the sense of Eq. (3) since

(T~T2) ' =T 'T,

This is easily rectified by symmetrizing the product; for
example, a discretization which is reversible is

(7)

This is the leapfrog discretization which correctly repro-
duces the O(8 ) terms in the equations of motion.

The full hybrid Monte Carlo algorithm is implement-
ed with a final accept or reject step after a trajectory of
N;,- leapfrog steps. This trajectory corresponds to an
initial half step in p, then N;, steps in 2 intercleaved
with N;, —

1 steps in p, and finally another half step in

p. The arguments of Refs. 6 and 9 indicate an asymptot-
ic behavior with the volume —V ~ for this algorithm.

An immediate question that comes to mind is the fol-
lowing: Is there a composition of a number of T~ and

T~ transformations which besides being reversible also
correctly gives higher-order terms in the equation of
motion? Such a transformation valid through order 6
was recently found by Campostrini. ' His result inspired
the present investigation and is a special case of our gen-
eral construction.

In classical mechanics the Hamiltonian is the genera-
tor of translations in time, i.e., it generates motion along
a classical trajectory. For any function F(t) which de-
pends on the phase-space variables at time t we can write

e:F(t) F(t+6) =F(t)+ tH, FIICK

+ —, jH, jH, Fj16 + . (8)

The bracket denotes the unusual Poisson bracket. Sup-
pose we have a transformation T„(6) giving a reversible,
area-preserving discretization of Hamilton's equations
accurate to some order n in 6. Thus we write for this
transformation,

e = T„(6)+A6"+ '+ (higher-order terms) .

Here, addition of transformations is defined in the natu-
ral way in terms of what they do to points in phase
space. We now consider combining two such transfor-
m ations,

This relation has an important consequence when T is
reversible in the sense of Eq. (3). In this case
T( —6)T(6) =1 is exact. With Eq. (11) this implies
that h, must vanish if n is odd. Indeed, this is a simple
way to see that the leapfrog algorithm errors only start
at the third power of the step size. In going to higher-
order schemes, as long as we maintain reversibility, the
leading error in the equations of motion for A and p
must be odd. The same is also true for the change in en-
ergy.

We are not ready for the announced higher-order
scheme. Just as the ordinary leapfrog algorithm was
built up of elementary canonical transformations the
general transformation will be built up of elementary
leapfrog steps. We proceed by induction, defining the
transformation at any level in terms of the previous level,
starting with the leapfrog. Assume a transformation
T„(6) is a reversible, area-preserving discretization of
Hamilton's equations accurate to even order n =2m, as
in Eq. (9). Picking an arbitrary integer i, we consider
taking i steps of size 6 forward with this transformation,
then one step backward with a size s6 = (2i ) 't "+ '16,
finally followed with an additional i steps of size 6 for-
ward. Then Eq. (11) implies

T„+2((2i—s)8) = T„(6)'T„(—s6) T„(6)'

0 (2i —s)6+ 0 x 6"+'+=e

will give an evolution accurate to order n+2. The fact
that n increases by 2 is due to the symmetrization which
keeps reversibility. Iterating this scheme recursively pro-
duces a discretization of the equations of motion to any
desired order. The recursion starts from m =1 using the
ordinary leapfrog. Campostrini's solution corresponds to
the case m =2, i =1, s =2' with an appropriate rescal-
ing of 6. Keeping i constant at each level gives a
higher-order scheme involving (2i+1) ' elementary
leapfrog steps.

The algorithm is not unique; in particular, there is the
parameter i giving the number of initial forward steps.
While ideally this variable should be determined empiri-
cally at each level to optimize computer time, a simple
criterion based on minimizing the largest step taken in a
microcanonical trajectory can be given. Working at level
m, we consider i(j ) to be the parameter i taken at level

j, where j~ m. We consider N;, steps at the highest
level. Calling 6 the net step for the initial leapfrog, then
the total trajectory length is

»»&n+ i + (IO)
(13)

10



VOLUME 63, NUMBER 1 PHYSICAL REVIEW LETTERS 3 JuLY 1989

For this trajectory the total number of leapfrog steps is

APE

N, =N;, Q [2'(j)+1],
1=2

and the maximum size for a single step is

(i4)

s „. „=6Q [2i(j)] '

J =2

d 2i(j)+1
[2 ( )] (2j —2)/(2j —) )

This suggests that at level j we take i to minimize
(2i+1)/[(2i) ' / j ' —1]. Up to j=9, as well as
asymptotically in j, the minimum occurs at i =2j.

We now discuss the asymptotic behavior as the volume
becomes large. Here, and in the following, we will for
simplicity assume that i is a constant. The analysis
parallels that in Refs. 6 and 9. We have in mind fer-
mionic problems where most of the time is spent in ma-
trix inversion. We consider a trajectory of N;, steps at
level m before refreshing the momenta; thus, the com-
puter time T grows as

T—V(2i + 1) 'N (i6)

This assumes a fixed number of inversion iterations per
leapfrog step. The error per degree of freedom after
N;, steps should scale roughly as h, =N;, 6' +'. The
acceptance probability will fall like P.„«—e and
hence we need

VN 2 /4m+ 2 (i7)

Furthermore, we also want the total trajectory to have
length of order 1 which yields

N;,6= 1.

H = —K g a; a/ ——,
' Ug(a;1a;1 —a;1a;1) (19)

where the o. sum runs over spin up and down and the a' s

satisfy canonical anticommutation relations. The system
is simulated by the hybrid Monte Carlo algorithm after

Eliminating 6' from these relations, we see that N;,
should scale roughly as N;, V'/" .—In Eq. (16) this
gives T—V'+'/ "'(2i+1) '. Minimizing T with

respect to m leads to m —(ln V) '/ so that
T—Vexp[(in V) '/ ]. Hence if we adjust m appropriate-
ly as the volume of our system increases, the correction
to a linear dependence grows slower than any power of
the volume.

As a first check on our method we looked at the devia-
tion of the energy when it was applied to the simple clas-
sical anharmonic oscillator. We found the expected
dependence of the error on the step size as a function of
rn as long as 6~ 1. As a real test of the method we ap-
plied it to a many-fermion system, the two-dimensional
Hubbard model. The quantum Hamiltonian is

TABLE I. The acceptance at the end of a trajectory of
length 1 for various algorithms. Averages are taken over ten

trajectories.

12'x8
12'x8

x8
12~x8
20~x 8
20~x 8
202 x 8
202 x 8
122x8
202 x 8

mic

15
3
2
1

15
3
2

1

8
8

0.067
0.138
0.119
0.086
0.067
0.138
0.119
0.086
0.125
0.125

Acceptance

0.95 (01)
0.68 (11)
0.47 (10)
0.65 (1 1)
0.95(03)
O. 51(11)
O.42(13)
0.27(10)
0.81(04)
0.82(08)

rewriting the partition function Z =tre ~ as a path in-

tegral. All the details of how this is done can be found in

Ref. 6. The only diA'erence with the simulation here is
that two separate auxiliary fields were used, one for each
spin, rather than the single one used in Ref. 6. As we
said before, implementing our higher-order scheme only
required minimal changes to the program. In our simu-
lations we always chose a value K=1 for the hopping pa-
rameter and U=2 for the strength of the four-fermion
interaction, and finally we kept the inverse temperature
at P=1.

In order to compare the different algorithms (different
m and i) we used the following simple procedure. At a
given fixed volume we chose N;„m, and i such that the
computer time was roughly a constant. Subsequently,
we determined 6 to give a total trajectory length of ex-
actly unity. All other things being equal, the best algo-
rithm is clearly the one with the highest acceptance after
the N;, steps. Quite arbitrarily we chose for the stan-
dard leapfrog algorithm N;, =15 and 6'= 1'5 . Hence in

all the other cases we insisted that the number of ele-
mentary leapfrog steps was about 15, leading to the same
amount of computer time required to travel a distance 1.
Our results are summarized in Table I.

It is evident that on these moderate-size lattices the
standard leapfrog method is hard to beat. The problem
with the higher-order algorithms seems to correlate with
the large backwards step in the middle of the algorithm.
Note the big fluctuations in the acceptance. As a com-
parison, we have also included the leapfrog algorithm
with a larger step size in the last rows of the table. On
larger volumes one must presumably go to larger values
of N;, in the leapfrog method. This will force simula-
tions to smaller 6' values than used here. In that case the
extra two powers gained may help the acceptance.

To summarize, we have presented a simple recursive
method to generate higher-order global Monte Carlo al-
gorithms from simple leapfrog steps. Using a reentrant
subprogram (this is particularly amusing to try in FOR-

TRAN) one can easily modify a hybrid Monte Carlo pro-
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gram to work to arbitrary order. There are obvious vari-
ations on our general scheme that we have not discussed.
For example, one may want to try additional accept or
reject steps on a fraction of the variables after each of
the 1V;, iterations in order to increase the final accep-
tance. The optimum parameters are presumably model
dependent.

%'e would like to thank M. Campostrini for communi-
cating his results to us prior to publication. This
manuscript has been authored under Contract No.
DE-AC02-76-CH00016 with the U.S. Department of
Energy.
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