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Expansion in 1/z for the Transition Temperature of Granular Superconductors
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An expansion in powers of 1/z is used to study the effect of phase fluctuations on the transition tem-
perature of a granular superconductor, modeled as an array of Josephson junctions. The lowest-order
correction to T./zJ diverges to negative infinity at the grain diameter a =zJ/U =2 and reaches the value
—1/2z when a =90, which corresponds to the classical XY model. The lowest-order correction to the

critical grain diameter is also calculated.

PACS numbers: 74.40.+k, 64.60.Cn, 74.50.+r, 74.70.Mq

It is common in condensed matter physics to use ap-
proximations that introduce unknown error into physical
solutions. Mean-field (MF) and self-consistent harmon-
ic (SCH) methods dominate the study of granular super-
conductors, yet the errors introduced by these approxi-
mations are not well understood. While the SCH ap-
proximation violates the phase periodicity of the Joseph-
son energy, the MF theory neglects the coupling of phase
fluctuations on neighboring grains. Both approximations
break down when phase fluctuations become large, such
as near the transition temperature T.. The effects of
phase fluctuations in shifting 7. from its MF or SCH
value has been largely unknown.

In this Letter, I describe a new technique for sys-
tematically studying the effects of phase fluctuations in
granular superconductors by performing an expansion in
1/z, where z is the number of nearest neighbors for each
grain. The zeroth-order term in the expansion of any
thermodynamic quantity is the MF value. The first-
order correction involves the coupling of phase fluctua-
tions neglected by MF theory. To demonstrate this ap-
proach, I calculate the first-order correction to the tran-
sition temperature of a granular superconductor. I find
that fluctuations decrease the transition temperature and
increase the critical grain diameter below which super-
conductivity becomes impossible.

It is customary to model a granular superconductor by
an array of Josephson-coupled grains. The Hamiltonian
for such an array is

H=2UZn,~2+J(Z>[1 —cos(g; —¢,)1, 1)
i ij

where J is proportional to the probability of Copper-pair
tunneling between neighboring grains, U=e?/C is in-
versely proportional to the capacitance C of a grain,' ¢,
is the phase of the superconducting order parameter, and
n; = —id/d¢; is the operator for the number of excess
Cooper pairs on the ith grain. The tunneling of Cooper
pairs between neighboring grains favors the growth of a
global order parameter with all the phases equal. But
the transfer of Cooper pairs between grains costs the

charging energy 2UXn? =X,q?*/2C, where g; =2en; is
the excess charge on a grain. Hence, the charging ener-
gy inhibits the tunneling of Cooper pairs and disrupts the
phase coherence of the array. The resistivity of a granu-
lar superconductor vanishes upon the onset of global
phase coherence, below the transition temperature 7.,
when M =(cos¢;’ becomes nonzero. As the grain diame-
ter decreases, the charging energy dominates the Joseph-
son energy and T, is suppressed. The magnitude of this
suppression is measured by the dimensionless parameter
a=2zJ/U, which is proportional to the grain diameter.
When a=zJ/U is lower than a critical value a., super-
conductivity becomes impossible and 7, =0.

The Hamiltonian of Eq. (1) has been studied by a
variety of analytic methods.?”!'! MF?*® and SCH?®
methods agree that the order parameter M is a monoton-
ically decreasing function of temperature and that 7, is
a monotonically increasing function of a, for a> «..
However, both analytic techniques break down when
phase fluctuations become large. The SCH approxima-
tion violates the phase periodicity of the Hamiltonian,
H(¢;+27x)=H(¢;), by replacing the Josephson energy
by a quadratic potential. The difference between the
quadratic and cosine potentials become important when
((¢; —9;)>>= (z/4)%. Then the phase periodicity be-
comes crucial'?> and the SCH method becomes inade-
quate. Because the harmonic eigenfunctions are them-
selves nonperiodic, it is impossible to restore the effect of
phase periodicity in a correction to the lowest-order SCH
result. MF theory, on the other hand, maintains the
phase periodicity of the array but neglects the coupling
of phase fluctuations on neighboring grains. Near the
transition temperature 7, the coupling of phase fluctua-
tions becomes important and the MF theory becomes in-
valid. Fortunately, the effect of phase fluctuations can
be included in a first-order 1/z correction to the MF re-
sult.

The expansion of the order parameter M in powers of
1/z was summarized in previous work'® and will be de-
scribed in detail elsewhere.'* Here I briefly outline the
procedure, which involves separating the Hamiltonian
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into three terms:

H=Heg+H +H,, @
where
Her=2.{2Un? — zJ{cos¢,)mrcosé;} , 3)
i
H,= —J(Z){(cosd),- —{cosg1Imr) (cosp; — (cosg)mr) +sing; sing;} , 4)
i
and H is a ¢ number. The MF theory neglects H,, which couples the phase fluctuations on neighboring grains.
In the interaction representation, the order parameter is given !> by
- B A -
Ms(cos¢|)=LTr [e ﬂH‘“T,exp[—f Hz(r)dr]cos¢|(0)] , (5)
Z 0
— B A
Z=Tr [e AT exp [—j; Hz(r)dr] ] , (6)
where B=1/T, T. is the time-ordering operator, and
operators in the interaction representation are defined by z™72 so the contribution of such diagrams is of order

A(r)=e™rge =T @)

The 1/z expansion is generated from Eqs. (5) and (6) by
expanding both the numerator of M and the partition
function Z in powers of fluctuation energy H,. Ex-
pressed as functions of the dimensionless temperature
T* =T/zJ and the grain diameter a, the terms in this
expansion can be classified by their order in 1/z.

To first order in 1/z, M is written

M—Mo(a,T*)+%M1(a,T*). ®8)

The lowest-order term M is the MF solution, which is a
function only of @ and T*. The first-order correction in-
volves a sum over an infinite number of terms, shown in
Fig. 1. Each line represents a factor of H, coupling
neighboring grains. The origin of every diagram is fixed
at grain 1 but the other points are free to vary. Since
each link (made up of a single line or a loop of two lines)
can be oriented in z different directions, the contribution
of a diagram with m lines is proportional to J™z™ ™!
=(Jz)™/z. Thus, in terms of the dimensionless vari-
ables, the mth-order diagram is of order 1/z.

In two or three dimensions, the contribution of closed
paths to M| can be neglected. The number of closed-
path diagrams with m lines is almost always'® less than

m
m-=1
m-2

2 2 2
M1:O + + +I +".
1 1 1

FIG. 1. Series of diagrams which contribute to M.

90

1/z% or lower. Since closed-path diagrams involve the
connectivity of the array, their contribution will depend
on the lattice as well as on the number of nearest neigh-
bors. The correction M /z, on the other hand, is the
same for a hexagonal lattice in two dimensions and a cu-
bic lattice in three dimensions, both with z=6. Hence,
the first-order correction M /z can be considered the
lattice-independent correction to the order parameter.

In Ref. 13 the infinite sum for M, was performed by
expressing the (m+1)th-order contribution M+ in
terms of the mth order one M l("‘). Because
Mm+tD =fp (M the summation M,=X,,=M "™
=M /(1 —f) can be evaluated exactly. The first-order
correction M| is negative and increases in magnitude as
T* increases or as a decreases, so that fluctuations
suppress the order parameter. As T* approaches the
MF transition temperature, the scaling function f
reaches 1 and M diverges to —oo. This divergence sig-
nals the breakdown of the expansion about the MF solu-
tion near the transition temperature, when fluctuations
drive the system normal.

The divergence of M, at the MF transition tempera-
ture also signals a shift in the transition temperature
away from the MF value. This shift can be calculated
by using

T* =T0(a)+%T|(a) ©)

to satisfy the condition M(T*)=0. The first-order
correction T'; obtained from Egs. (8) and (9) is

. M (a,T*)
T(a)=— lim ——————
R T*linr(, dM/dT*

Both the MF transition temperature 7o and the first-
order correction 7'; are plotted in Fig. 2 versus grain di-
ameter a. The MF transition temperature 7 is sup-
pressed by charging effects and vanishes when the grain
diameter «a is less than 2. As expected, the fluctuations
neglected by MF theory decrease the transition tempera-

(10)
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FIG. 2. Ty (solid) and — T, (dashed) vs a.

ture: The first-order correction 7'; is negative and in-
creases in magnitude as a decreases. In the limit a—> oo,
corresponding to a classical XY Hamiltonian without
charging energy, To— 5 and T,— — +. The deviation
from this limit in Fig. 2 arises from computational un-
certainty. On the other hand, when a— 2, T diverges
to — oo,

Just as the divergence in M| signals a shift in 7%, the
divergence in T likewise signals a shift in the critical
grain diameter a., below which superconductivity is im-
possible. Writing

ac=a0+ia|, an
z

the first-order correction to the MF value ap=2 is given
by
i T (a) 7
o= m S Tde s 12
Thus, fluctuations increase the critical grain diameter
and eliminate superconductivity for grains with diame-
ters a between 2 and 2+7/5z. Using a cluster-expansion
method at zero temperature, Ferrell and Mirhashem '
also obtained the result @, = %. Because their method is
very different from the technique described here, the
agreement between the two approaches is quite gratify-
ing. The detailed calculation required to obtain the re-
sult of Eq. (12) will be described elsewhere. '4
Quantitatively, the calculations of this work indicate
that fluctuations induce significant shifts in both the
transition temperature and the critical grain diameter.
For a cubic lattice with z =6, the shift in T* for large

grains is about 15%. For smaller grains, this shift be-
comes even larger. It would be very interesting to verify
the predictions of this work for a=oo by comparing
the transition temperatures of two-dimensional square
(z=4) and hexagonal (z=6) arrays. For a =00,

T:=i[1—i], (13)

so that to first order, T.(z=4) =3T.(z=6)/5.

Strictly speaking, of course, an expansion in powers of
1/z is invalid in two dimensions, where spin waves des-
troy the long-range order. In two dimensions, the MF
values of the order parameter and the transition temper-
ature are exactly canceled by the fluctuation terms of the
expansion, summed to infinite order in 1/z. This cancel-
lation does not appear at any finite order in the 1/z ex-
pansion because the MF theory has replaced the low-
lying spin waves by a collection of Einstein modes with
discrete frequencies. The spin-wave spectrum is fully
recovered and the phase coherence is completely des-
troyed only after all the diagrams have been summed.

To conclude, I have demonstrated a new approach to
calculate the lattice-independent correction to the MF
transition temperature and critical grain diameter of a
granular superconductor. Previously, 1/z expansions
were used to study the Heisenberg and Ising models in a
magnetic field.!” However, these expansions were rather
unwieldy because an infinite summation was required to
obtain the lowest-order MF results. The 1/z expansion
developed in this work avoids that task by expanding
about the MF Hamiltonian. This method has recently'4
been used to study the short-range order and specific-
heat anomalies of granular superconductors.
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