Exotic N = 82 Nuclei ¹⁵³Lu and ¹⁵⁴Hf and Filling of the $\pi h_{11/2}$ Subshell

J. H. McNeill, ^{(1),(a)} J. Blomqvist, ⁽²⁾ A. A. Chishti, ⁽¹⁾ P. J. Daly, ⁽³⁾ W. Gelletly, ^{(1),(b)} M. A. C. Hotchkis, ⁽¹⁾ M. Piiparinen, ^(3,4) B. J. Varley, ⁽¹⁾ and P. J. Woods ⁽⁵⁾

⁽¹⁾Schuster Laboratory, Department of Physics, University of Manchester, Manchester M139PL, United Kingdom

⁽²⁾Manne Siegbahn Institute of Physics, S-10405 Stockholm, Sweden

⁽³⁾Chemistry Department, Purdue University, West Lafayette, Indiana 47907

⁽⁴⁾Department of Physics, Jyväskylä University, SF-40100 Jyväskylä, Finland

⁽⁵⁾Department of Physics, University of Edinburgh, Edinburgh EH9 3JZ, United Kingdom

(Received 24 April 1989)

Microsecond isomers in the very proton-rich N=82 nuclei ¹⁵³Lu and ¹⁵⁴Hf have been identified by γ ray spectroscopy following mass analysis of ¹⁰²Pd+245 MeV ⁵⁴Fe reaction products using the Daresbury Recoil Separator. The decays of the isomers, interpreted as $(\pi h_{11/2})^n$ states, are characterized. Examination of reduced E2 transition rates between $(\pi h_{11/2})^n$ states in the N=82 isotones indicates that the half-filling of the $\pi h_{11/2}$ subshell occurs just below Z = 71.

PACS numbers: 21.10.Pc, 23.20.Ck, 23.20.Lv, 27.70.+q

Some ten years ago it was found¹ that the Z=64, N=82 species ¹⁴⁶Gd displays properties resembling those of a doubly magic nucleus. This discovery stimulated spectroscopic studies of many neighboring nuclei which have a few valence nucleons outside the ¹⁴⁶Gd core and may be well described in terms of shell-model configurations. Particularly interesting are the protonrich N=82 isotones above ¹⁴⁶Gd, where the three nearly degenerate proton subshells $h_{11/2}$, $s_{1/2}$, and $d_{3/2}$ are being filled. The high-*i* unique-parity $\pi h_{11/2}$ orbitals should be especially important in the formation of high-spin states, and one could expect vrast excitations of the type $(\pi h_{11/2})^n$ to figure prominently in the spectra of N=82isotones with Z-64 valence protons. Experiments²⁻⁴ have identified and characterized the decays of related $(\pi h_{11/2})^n E_2$ isomers below 3 MeV in the 2-6-valenceproton N=82 nuclei ¹⁴⁸Dy, ¹⁴⁹Ho, ¹⁵⁰Er, ¹⁵¹Tm, and ¹⁵²Yb. In the even-A nuclei the isomeric transitions are between 10⁺ and 8⁺ $(\pi h_{11/2})^n$ states of seniority v=2; in the odd-A nuclei they are $\frac{27}{2} \rightarrow \frac{23}{2}^{-}$ transitions between $(\pi h_{11/2})^n v = 3$ states. These isomeric decays also populate 3⁻ octupole, $[\pi(h_{11/2})^{n-1}s_{1/2}]5^-$ and $[\pi(h_{11/2})^{n-1}d_{3/2}]7^- v = 2$ excitations in the even-A nuclei, and corresponding $\frac{15}{2}^+$, $\frac{19}{2}^+$, and $\frac{23}{2}^+$ v=3 states, formed by coupling with an additional $h_{11/2}$ proton, in the odd-A nuclei.

The results for ¹⁴⁸Dy include a complete spectrum² of $(\pi h_{11/2})^2$ levels $(0^+, 2^+, 4^+, 6^+, 8^+, 10^+)$, whose energies provide empirical two-body matrix elements for calculating the $(\pi h_{11/2})^n$ spectra in the heavier isotones. Moreover, Lawson⁵ has used the ¹⁴⁸Dy energies to show that the condition for no seniority mixing is very nearly fulfilled. When seniority is a good quantum number, the reduced E2 transition rates between corresponding $(\pi h_{11/2})^n$ states of the same seniority should be proportional to $(6-n)^2$, where n is the $\pi h_{11/2}$ occupation number, and should become zero when n=6 at the half-filled subshell.^{6,7} The relevant expressions for the v=2 and v = 3 transitions are⁸

$$B(E2;10^+ \to 8^+) = \left(\frac{6-n}{4}\right)^2 \frac{2025}{35\,321\pi} (e_{\text{eff}}\langle r^2 \rangle)^2$$

and

$$B(E2;\frac{27}{2}^{-} \to \frac{23}{2}^{-}) = \left(\frac{6-n}{4}\right)^2 \frac{32\,400}{265\,837\pi} (e_{\text{eff}}\langle r^2 \rangle)^2.$$

Using a fixed value for the effective charge $e_{\text{eff}} = 1.52e$, and $\langle r^2 \rangle = 32$ fm² for the $\pi h_{11/2}$ orbital, the measured B(E2) values for the five N=82 nuclei are very well reproduced^{8,9} by assuming that in every case n equals Z-64, the number of valence protons. For ¹⁵²Yb with six valence protons, the experimental B(E2) is not exactly zero as in the ideal picture, but its very small value (0.02 Weisskopf units) demonstrates that the $\pi h_{11/2}$ subshell is close to being half-filled in the 8^+ and 10^+ states.

It is difficult to see why this simple model is so successful, since one would expect that in the relevant states of the Z > 67 nuclei, the $s_{1/2}$ and $d_{3/2}$ subshells should also be partly occupied by proton pairs, reducing the occupation of $\pi h_{11/2}$. On the other hand, the singleparticle energy gap at Z=64 is significantly smaller than the gaps at traditional magic numbers, and scattering of proton pairs from $g_{7/2}$ or $d_{5/2}$ across the gap into $h_{11/2}$ may compensate in some measure for the depletion into $s_{1/2}$ and $d_{3/2}$. Calculations^{8,10} which take account of these two effects suggest that half-filling of the $\pi h_{11/2}$ subshell might be postponed to ${}^{153}_{71}Lu_{82}$ or ${}^{154}_{72}Hf_{82}$, but there have been no data for these nuclei up to now.

The N=82 isotones ¹⁵³Lu and ¹⁵⁴Hf lie very close to the proton drip line. Previous attempts to study these

TABLE I. Production cross sections for the reaction $^{102}Pd + {}^{54}Fe \rightarrow {}^{156}Hf^*$ predicted by the code CASCADE at ${}^{54}Fe$ beam energies of 235 and 245 MeV. The right-hand column gives relative experimental yields (in arbitrary units) for the isomeric species identified.

Exit channel	Product	σ(235 MeV) (mb)	σ(245 MeV) (mb)	Isomeric yields ^a
2pn	¹⁵³ Yb	73	60	70
p^2n	¹⁵³ Lu	2	3.5	1.0
pn	¹⁵⁴ Lu	3	1.2	2.5
<u>2n</u>	¹⁵⁴ Hf	0.2	0.1	0.06

^aUncorrected for differences in the separator transmission for different products.

nuclei have been unfruitful mainly because they can be produced only in reactions with very low cross sections. In the present experiments, the sensitivity for detection of weak isomeric decays was considerably enhanced by use of the Daresbury Recoil Mass Separator.¹¹ The ionization chamber normally located behind the separator focal plane was replaced by an aluminium catcher foil, which was surrounded by four large Ge detectors and a low-energy photon spectrometer. Fusion-evaporation recoils from the reaction $^{102}Pd+ {}^{54}Fe \rightarrow {}^{156}Hf^*$ were mass analyzed, and, after passing through the positionsensitive focal-plane detector,¹¹ were deposited on the catcher foil for γ -ray measurements. Time relationships between signals from the position-sensitive detector and from the γ -ray detectors were used for mass, half-life, and $\gamma\gamma$ coincidence determinations. Since the separator transit time is $\sim 1 \ \mu s$, only long-lived isometric species were observed, but they could be studied under lowbackground conditions. The measurements were performed over a three-day period using 10-15-particle-nA beams of 240-245-MeV ⁵⁴Fe ions on a 1-mg/cm² ¹⁰²Pd target.

Production cross sections predicted by the code CAS-CADE¹² for the reaction products ¹⁵³Yb, ¹⁵³Lu, ¹⁵⁴Lu, and ¹⁵⁴Hf, all of which were expected to have long-lived isomers, are summarized in Table I, which also lists relative yields at the catcher foil for the isomeric species identified in these experiments. In line with the predictions, by far the strongest family of γ rays was observed in the A = 153 mass window and to be coincident with Yb x rays. The 23 γ rays thus assigned to ¹⁵³Yb have been placed¹³ in the decay scheme of a new 15- μ s isomer in that nucleus. A second, much weaker (<2%) γ -ray family, including 130-, 174-, and 217-keV lines, was also observed in the A = 153 mass window. These γ rays are assigned to the p2n evaporation product ¹⁵³Lu, because they appeared in coincidence with Lu K x rays [Fig. 1(a)], whereas ¹⁵³Yb lines were suppressed by more than a factor of 50 in the same spectrum. Other transitions in ¹⁵³Lu were identified by $\gamma\gamma$ coincidences [e.g., Fig. 1(b)]. The ¹⁵³Lu γ rays decayed with the half-life $t_{1/2} = 15 \pm 3$ μ s, and they are all placed in the isomeric decay scheme

FIG. 1. (a)-(d) Key γ -ray coincidence spectra for the specified mass windows and gating transitions.

shown in Fig. 2 on the basis of the comprehensive $\gamma\gamma$ coincidence results. Spins and parities are assigned mainly by analogy with the similar decay schemes of the shorter-lived $\frac{27}{2}$ isomers³ in ¹⁴⁹Ho and ¹⁵¹Tm. The total conversion coefficient of the 130-keV transition, derived from intensity balance, is consistent with E2 character, and the measured half-life gives

$$B(E_{2};130 \text{ keV}, {}^{153}\text{Lu}) = 0.45 \pm 0.09 e^{2} \text{ fm}^{4},$$

the smallest value determined in the N=82 series. The $\gamma\gamma$ time distributions for ¹⁵³Lu indicated a lower isomer with $t_{1/2} > 0.1 \ \mu$ s, that we associate with the $\frac{23}{2}^{-}$ state.

As Fig. 2 shows, the spectrum of $(\pi h_{11/2})^7$ levels calculated using the empirical $(\pi h_{11/2})^2$ interactions from ¹⁴⁸Dy is in very good agreement with experiment, especially for the four topmost levels. The $\frac{21}{2}^-$ level in ¹⁵³Lu, populated by an unobserved 21-keV transition from the $\frac{23}{2}^-$ level, has no observed counterparts in ¹⁴⁹Ho and ¹⁵¹Tm. Theory⁵ predicts such a level ~26 keV below the $\frac{23}{2}^-$ in each of the three nuclei, but the $\frac{23}{2}^- \rightarrow \frac{21}{2}^- M1$ transition is strongly forbidden. It ap-

FIG. 2. Isomeric decay scheme for ¹⁵³Lu. Transition arrow widths are proportional to the measured intensities, with internal conversion contributions unshaded. The calculated $(\pi h_{11/2})^7$ spectrum, with the $\frac{27}{2}^-$ level energy matched to experiment, is shown to the left.

pears that the $\frac{23}{2}^- \rightarrow \frac{19}{2}^- E2$ decay must be extremely retarded, as it is in ¹⁵³Lu, before the $\frac{23}{2}^- \rightarrow \frac{21}{2}^-$ transition becomes competitive. An interesting note is that the $\frac{27}{2}^-$ 15-µs isomeric state in ¹⁵³Lu has a positive Q value of 3.3 ± 0.7 MeV (Ref. 14) for proton decay to the ¹⁵²Yb ground state, but this decay mode must be suppressed by the centrifugal barrier associated with l=13 nucleon transfer and by the complicated nucleon rearrangements involved.

The possible A = 154 products of the reaction were ¹⁵⁴Yb, ^{$\hat{1}54$}Lu, and ¹⁵⁴Hf, and of these the N=84 nucleus ¹⁵⁴Yb has no μ s isomers. The most intense $A = 154 \gamma$ rays were found to be coincident with Lu x rays, and they are assigned ¹⁵ to a new 35- μ s isomer in ¹⁵⁴Lu. Careful scrutiny of the $A = 154 \gamma$ -ray spectrum for a possible 154 Hf $2^+ \rightarrow 0^+$ transition in the 1490-1530keV range suggested by systematics revealed a weak 1513-keV γ ray that decayed with the half-life $t_{1/2} = 9 \pm 4 \mu s$. A gate on the 1513-keV transition [Fig. 1(c)] indicated coincidence peaks (each with 4-6 counts) at 135, 214, and 311 keV, and additional gates on these low-energy lines identified another γ ray of 498 keV in the same nucleus [Fig. 1(d)]. Although the data are statistically poor and provide no Z identification, the firm A = 154 mass determination, the N = 82 systematics, and the observed reaction yield (Table I) all favor the assignment of these five γ rays to the decay of a 9- μ s isomer in ¹⁵⁴Hf. When the transitions are ordered as shown in Fig. 3, the smooth energy-level systematics $^{2-4}$ of the even-AN = 82 isotones are extended to Z = 72 in a convincing manner. The value of the ¹⁵²Yb 10⁺ half-life

FIG. 3. Energy systematics of even-A N = 82 isotones, showing the main decay pathways of the 10⁺ isomers.

shown in Fig. 3 was determined during the present studies. By assuming that the energies of the unobserved $10^+ \rightarrow 8^+ E2$ transitions in ¹⁵²Yb and ¹⁵⁴Hf lie within the range 14-70 keV, as systematics indicate, the following results are obtained:

$$B(E_{2};10^{+} \rightarrow 8^{+}, {}^{152}\text{Yb}) = 0.9 \pm 0.1 e^{2} \text{fm}^{4}$$

and

$$B(E_{2};10^{+} \rightarrow 8^{+}, {}^{154}\text{Hf}) = 2.9 \pm 1.4 e^{2} \text{fm}^{4}$$

The faster transition rate for 154 Hf is a clear signal that in this nucleus the $\pi h_{11/2}$ subshell is more than halffilled.

For both ¹⁵³Lu and ¹⁵⁴Hf, the B(E2) results are much smaller than the values predicted using the equations and model assumptions specified earlier, and they imply that the $\pi h_{11/2}$ occupation numbers for these nuclei are in fact somewhat less than Z-64. The overall results are illustrated in Fig. 4, where the square root of the transition amplitudes, B(E2), for the seven N=82 isotones are plotted versus Z-64. The square root leaves an ambiguity about the sign of the E2 matrix element, which should change at the point of half-filling, but the data strongly indicate that the sign change occurs just before Lu. The fact that the smooth curves through the data points both intersect the zero axis at the same value of Z-64 provides reassurance that correct signs have been chosen for the amplitudes. The variation of E2 transition amplitude with number of valence protons is not exactly linear, but nearly so, and it is clear that the $\pi h_{11/2}$ subshell is closest to being half-filled in the Z = 71 isotone ¹⁵³Lu. It is less easy to specify the magnitude of the $\pi h_{11/2}$ E2 effective charge in this region, but it may be

FIG. 4. Measured E_2 transition amplitudes for v=2 and v=3 isomeric transitions in N=82 isotones as a function of Z-64. Where error bars are not shown, they lie within the plotted point.

significantly larger⁸ than 1.52e, the value suggested previously.²

In summary, experiments using the Daresbury Recoil Mass Separator have identified long-lived $(\pi h_{11/2})^n$ isomers in the previously unknown proton-rich N=82 nuclei ¹⁵³Lu and ¹⁵⁴Hf. The results, together with those for lighter N=82 isotones, provide an outstanding illustration of the dependence of E2 transition rates between j^n states on the subshell occupation, and demonstrate that half-filling of the $\pi h_{11/2}$ subshell in the N=82 series occurs just below Z=71 ¹⁵³Lu.

We thank R. Broda and C. J. Lister for useful discussions, and G. Reed, D. Blunt, and the Daresbury Laboratory staff for technical assistance. This work has been funded by the United Kingdom Science and Engineering Research Council, and two of us (P.J.D. and M.P.) acknowledge support from the U.S. Department of Energy.

^(a)Present address: Oak Ridge National Laboratory, Oak Ridge, TN 37831.

^(b)Present address: Daresbury Laboratory-Science and Engineering Research Council, Daresbury, Warrington, WA4 4AD, United Kingdom.

¹P. Kleinheinz et al., Z. Phys. A 290, 279 (1979).

²P. J. Daly et al., Z. Phys. A 298, 173 (1980).

³J. Wilson *et al.*, Z. Phys. A **296**, 185 (1980); H. Helppi *et al.*, Phys. Lett. **115B**, 11 (1982); Y. H. Chung *et al.*, Phys. Rev. C **29**, 2153 (1984); J. H. McNeill, Ph.D. thesis, Purdue University, 1986 (unpublished).

⁴E. Nolte *et al.*, Z. Phys. A **306**, 223 (1982); **309**, 33 (1982). ⁵R. D. Lawson, Z. Phys. A **303**, 51 (1981).

⁶A. de Shalit and I. Talmi, *Nuclear Shell Theory* (Academic, New York, 1963).

⁷R. D. Lawson, *Theory of the Nuclear Shell Model* (Clarendon, Oxford, 1980).

⁸J. Blomqvist, *International Review of Nuclear Physics* (World Scientific, Singapore, 1984), Vol. 2, pp. 1-32.

⁹P. J. Daly *et al.*, Proc. Int. Conf. Nucl. Phys. 1, 73 (1983).
¹⁰R. R. Chasman, Phys. Rev. C 28, 1374 (1983).

¹¹A. N. James *et al.*, Nucl. Instrum. Methods Phys. Rev., Sect. A **267**, 144 (1988).

¹²F. Pühlofer, Nucl. Phys. A280, 267 (1977).

¹³J. H. McNeill et al., Z. Phys. A 332, 105 (1989).

¹⁴Evaluated using ground-state masses from A. H. Wapstra and G. Audi, Nucl. Phys. A432, 1 (1985).

¹⁵J. H. McNeill *et al.* (to be published).