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We present a gauge theory of two-dimensional gravity which is derived from a generalization of the
Jackiw-Teitelboim model. Using canonical quantization, we construct the exact quantum solution of this
model.
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Lower-dimensional theories of gravity have attracted a
growing interest recently. While such theories are most-
ly studied to gain insight into both the conceptual and
technical issues that arise in the quantization of gravity
in four dimensions, they also possess physical and math-
ematical significance. In two dimensions the usual
Einstein-Hilbert action is a topological invariant (the
Euler class) of the space-time manifold; the Einstein ten-
sor vanishes identically. As a natural analog of the vacu-
um Einstein equations, Jackiw and Teitelboim proposed
the equation R —2k 0, where R is the curvature scalar
and k is the cosmological constant. Moreover they pro-
posed an action which yields this equation upon a local
variational principle. Soon after, an exact solution of
this model for the case of open spatial sections was
found. Quantization of the (topological) Einstein-
Hilbert action and of the action induced by massless
particles have also been studied.

In three dimensions the Einstein-Hilbert action is no
more a topological invariant. However, the theory is still
"trivial" in the sense that there are no propagating de-
grees of freedom. It has been shown that three-dimen-
sional gravity can be formulated as a Chem-Simons
gauge theory of ISO(2, 1), making the exact solution of
the model possible.

It is the purpose of this Letter to combine the above
group theoretical ideas about three-dimensional gravity
with the Jackiw-Teitelboim model of two-dimensional
gravity. We present a generalization of the Jackiw-
Teitelboim model which can be formulated, for nonvan-
ishing cosmological constant k, as a gauge theory of
SO(2, 1). We perform the canonical quantization and
construct the exact quantum solution of this gauge
theory of two-dimensional gravity.

We formulate our model in terms of the Z~eibein and
spin-connection one-forms e' (a=0, 1) and co, taken as
independent variables and combined into a gauge-Geld
one-form of the Poincare group ISO(1,1),

e'I', + coA.

P, are the generators of translations and A is the genera-
tor of Lorentz transformations. Together they satisfy
the two-dimensional Poincare algebra

[A,P ] =e Pb, [P„Pb]=0. (2)

Our conventions for the Bat Minkowski metric and the
antisymmetric e tensor are ri, b =diag( —1,1), ep) =1.
The generator of Lorentz transformations acting on
two-vectors is —e'b. The curvature two-form construct-
ed from the connection (1) is

F=dA+AAA =7'P, +%A, (3)

This algebra possesses an invariant, nondegenerate bilin-

ear form given by the Killing metric

kg, b 0
gij 0

where the new indices i,j run from 0 to 2. Using this
metric and the definition (T;) =(Tp, T~, T2) =(Pp, P~, A)
we can write (4) in the compact form

[Tt, Tj) =f(~ Tk = etjk g Tt q

gij Y flak fj I ~ &p12

(5)

The Killing metric becomes degenerate in the limit
k 0. For Minkowskian space-time, (5) is the SO(2, 1)
(de Sitter) algebra, whereas for Euclidean space-time

where '7'=de' —cpe'b Ae and % =dcp are the torsion
and curvature two-forms, respectively.

It is not possible to formulate an ISO(1,1) gauge
theory, since there is no invariant, nondegenerate bilin-
ear form on the Poincare algebra (except in three dimen-
sions ). In the presence of a nonvanishing cosmological
constant k, we can, however, use this dimensionful pa-
rameter to deform the Poincare algebra to the de Sitter
algebra

[A,P, ] =e, Pb, [P„Pb]=«, t, A.
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and k & 0 it becomes the SO(3) algebra.
The two-component of the curvature, corresponding to

the original Lorentz generator A, becomes now

ishes weakly (as indicated by = )
t LH- —„dxTrAOD|y=o.4 0

(i3)

, T'-0,F -0-'R 2k, (7)

where R (2/dete)e"'B„to, is the Ricci curvature scalar.
Using the trace on the Lie algebra given by the Killing
metric, i.e., TrTITJ =g;J, we can produce (7) as the
equations of motion for the action

S = TryF d x Try(80A i
—8|AD+ [AO, A ~]) . (8)

p is a dimensionless auxiliary field with values in the Lie
algebra, which satisfies the equation of motion Dp =0.

The action is invariant with respect to infinitesimal
gauge transformations with parameter X =A, 'T;,

F dc0+ e~—be Ae
2

'
The condition of vanishing curvature, F=0, is therefore
equivalent to the equations of motion of the Jackiw-
Teitelboim model' (expressed in terms of the Zweibein
and the spin connection),

Note that spatial partial integrations do not produce any
surface term, since we assume closed spatial sections.
According to the canonical algebra (11) the Hamiltoni-
an (13) generates the equations of motion for the
dynamical field A~, 8,A| i[H, A&] D|A0. Thus we
see that the effect of introducing the field p and the ac-
tion (8) is to eliminate the original coordinate Ao (which
now becomes a nondynamical Lagrange multiplier) in
favor of a canonical momentum p conjugate to the
dynamical variable A ~.

In order to give a functional Schrodinger representa-
tion for the canonical algebra (11) we choose the "posi-
tion-space polarization" in which states are represented
by functionals of the coordinate A&, +(A&). Then Al
acts on the states by multiplication and p by functional
differentiation, y;e(A ~) - (b/ibA I )e(A|). Gauge in-
variance at the quantum level is guaranteed by the re-
quirement that the Gauss-law constraint (generator of
gauge transformations on A 1) annihilates physical states.
This functional differential equation is most easily solved

by the introduction of the Lie-group-valued function
S(x) (see also Ref. 9),

bA —dA, + [A, ,A] DA, , —

bv -[X,v].
(9)

A i(x) -S(x)8„S '(x),

t x
(i4)

Under a diffeomorphism bx"-e"(x), the gauge field
transforms with the Lie derivative, which can be written
as

BA„e~Fp„+D„(e~Ap) . (io)

Using the equations of motion F=0, this is equivalent to
a gauge transformation with parameter A, = —e A~. The
same is true for the auxiliary field p. Thus we see that
on-shell, gauge invariance is equivalent to general coor-
dinate invariance (see also Ref. 5).

We now proceed to the canonical quantization of the
theory specified by the action (8) on a space-time with
closed circles of length L as spatial sections. The quanti-
zation of the first-order Langrangian corresponding to
(8) (in phase-space form) leads to nontrivial equal-time
commutation relations between y and A;,

D, v -a,v+[A, ,v ] =O. (i2)

As a consequence of the canonical algebra (11), Gauss's
law generates gauge transformations on the dynamical
field A]. As always in generally covariant theories the
Hamiltonian is proportional to the constraints and van-

[v;(t,x),A i'(t,y)] =—.b(x —y)b1

l

The nondynamical Lagrange multiplier Ao leads to the
"Gauss-law" constraint

S(x) -Pexp —„dx'A )(x')

where we have omitted the time variable and P denotes
the usual path ordering. W= S(L) is then th—e Wilson-
loop variable around the closed spatial sections. Because
of

8~,. +e;1'Ai (x) i trW 0,
8A'i x) bAi x)

(is)

the gauge-invariant physical states are given by func-
tions y(trW), where the trace is taken over an irreduc-
ible representation of the gauge group. Note that in the
case of infinite-dimensional representations of SO(2, 1)
the trace converges in the distribution sense. ' The solu-
tion (15) of the Gauss-law constraint follows also from
gauge invariance of the Lagrangian (specifically there is
no total time derivative term in the transformation of the
Lagrangian). According to a general result, " in this
case there is no one-cocycle in the realization of gauge
invariance on the physical states. Therefore, these must
satisfy %'(Af ) % (A 1 ) and the only gauge-invariant
functionals of A~ are built from the trace of the Wilson
loop around the closed space.

The above computation shows that the configuration
space of two-dimensional quantum gravity is given by
the gauge group G modulo its adjoint action, G/G, d;,
where G SO(3), SO(2, 1) for k & 0 and Euclidean and
Minkowski gravity, respectively. In the case of Euclide-
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an gravity, with the compact gauge group SO(3), the
Peter-Weyl theorem' states that a complete basis for
the square integrable functions on the above config-
uration space is given by the character functions g, (S')
—=tr„(8') of the irreducible representation r of SO(3):

For Minkowski gravity, with the noncompact gauge
group SO(2, 1), an analogous construction exists. '

However, in this case one must take into account also the
infinite-dimensional representations of SO(2, 1).

Since the principle of our construction is to substitute
general coordinate invariance with gauge invariance, we
can produce dynamics for our theory by adding to the
action a gauge-invariant potential term for tv,

—fd x
x V(trw ) (we recall that tv is the momentum conjugate
to At). This produces the Hamiltonian H= fodx
x V(trp ) and changes the equations of motion to

Fo) -V'(trav')2' ', (i7)

where the prime denotes diff'erentiation with respect to
the argument. Note that at all minima of the potential
V this equation of motion requires the vanishing of the
curvature and reproduces the equations of the Jackiw-
Teitelboim model. Using symmetric point splitting we
find

where C, is the quadratic Casimir of the representation
r. Therefore, the character functions g, are eigenstates
of the Hamiltonian with eigenvalue given by

Hg„LV(C„)g„.
The ground state of the theory has vanishing torsion and
constant curvature.

We would like to thank R. Jackiw for a careful read-
ing of the manuscript. C.A.T. thanks G. V. Dunne for
helpful discussions and the Laboratoire de Physique
Nucleaire of the Universite de Montreal for the kind
hospitality during a visit there. This work is supported

in part by funds provided by the U.S. Department of En-
ergy under Contract No. DE-AC02-76ER03069. K.I.
acknowledges support from the Natural Sciences and
Engineering Research Council of Canada. C.A.T. ac-
knowledges support from the Swiss National Science
Foundation.

Note added. —After completion of this work we re-
ceived a paper by Chamseddine and Wyler in which the
action (8) is also proposed and studied. '
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