
VOLUME 63, NUMBER 8 PHYSICAL REVIEW LETTERS 21 AUGUST 1989

Rigorous Lower Bound on the Dynamic Critical Exponents of the Swendsen-Wang Algorithm
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We prove the rigorous lower bound zsw~ a/v for the dynamic critical exponent of the Swendsen-
Wang algorithm. For two-dimensional q-state Potts models with q 2, 3,4, this implies zsw~0, &, 1.
We present numerical data indicating that zsw=0. 55~0.03, 0.89~0.05 for q 3,4 (95% confidence
limits, statistical errors only). The discrepancy for q =4 appears to be caused by multiplicative logarith-
mic corrections.
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Monte Carlo computations of critical phenomena and
quantum field theory have been greatly hampered by
critical slowing down: The autocorrelation time z of the
traditional Monte Carlo algorithms —that is, roughly
speaking, the time needed to produce one "statistically
independent" field configuration —grows rapidly as the
critical point is approached. In recent years much eA'ort

has gone into developing new Monte Carlo algorithms
with radically reduced critical slowing down. '

Two years ago, Swendsen and Wang (SW) proposed
a Monte Carlo algorithm for Potts spin models that has
extraordinarily small critical slowing down. But very lit-
tle is understood at present, even heuristically, about the
SW dynamics: One would like to know why the critical
slowing down is so small, and why it is not eliminated en-

tirely.
In this Letter we prove a rigorous lower bound for the

autocorrelation time of the SW algorithm,

r~ constx CH,

where CH is the specific heat. This implies the bound

zsw ~ 6/v

for the dynamic critical exponent. It follows that critical
slowing down cannot be entirely absent (if the specific
heat diverges at criticality), and that in some cases (e.g. ,
the four-state Potts model in two dimensions) it must be
moderately severe. The physical mechanism underlying
our proof is the slow equilibration of the bond density A'

and other "energylike" observables.
Let us first recall that the SW algorithin simulates a

joint model having Potts spins a; 1,2, . . . , q at the sites
and occupation variables n;~ -0, 1 on the bonds, with
Boltzmann weight

W,„„,(/o}, [n}) Z 'Q[(1 —p; )6„, p+p; 8„, ~S, ,],
&ij )

where 0 ~ p;~ ~ 1. It is trivial to verify that the margin-
al distribution of (1) on the Potts variables [cr} (integrat-

ing out the [n}) is the ferromagnetic Potts model,

Z ' exp g J;J(8, , —1)
,&ij &

where p;J 1 —exp( —J;l). It is also easy to verify that
the marginal distribution of (1) on the bond variables
[n} (integrating out the [aj) is the random-cluster mod-
el with parameter q,

WRc([n}) Z Q p; + (1 —p )'q
,&ij ):nij &, ,&ij &: n

where C([n}) is the number of connected components
(including one-site components) in the graph whose
edges are the bonds having n;l 1. Moreover, the condi-
tional distribution of the [n} given the jcr} is as follows:
Independently for each bond (ij ), one sets n;~ -0 in the
case a;&trj, and sets n;l-0 and 1 with probabilities
1 —

p;t and p;J in the case cr; rr~. Finally, the condition-
al distribution of the [o} given the jn} is as follows: In-
dependently for each connected cluster, one sets all the
spins a; in that cluster equal to the same value, chosen
equiprobably from the set [1,2, . . . , q j.

The SW algorithm simulates the joint model (1) by
alternately applying the two conditional distributions—that is, by alternately generating new bond occupation
variables (independent of the old ones) given the spins,
and new spin variables (independent of the old ones)
given the bonds. The transition inatrix Psw -Psw
x (fcr, n}~ [o',n'} ) is therefore a product

Psw PbondPspin ~

where Pb, „d is the conditional expectation operator
E(

~
[cr}),and P,v;„ is E(

~
[n}).

Our strategy will be to prove a lower bound on the
autocorrelation time ~ by computing explicitly the auto-
correlation function at time lags 0 and 1 for a suitably
chosen trial observable f, and then using general facts
about reversible Markov chains. To obtain a good
bound, it is necessary to choose an observable f that has
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E(nb I ~~j) -pb&.. .
E (nb nb'

I «~j ) -pbpb'~

It follows from (2) that

(nb(t 0)nb (t 1)) &nbE(E(nb I fcrj) I fnj)&

&nbE (nb' I Io j )&

(E(nb) I joj)E(nb I tcrj))

PbPb&b, S,,&.

(2)

The corresponding truncated (connected) correlation
function is clearly

&nb(t 0);nb (t 1)& pbpb &ho, ;b, ,&, (4)

sufficiently strong overlap with the slowest model(s).
We shall choose f to be the bond density

JV- n~).
&ij &

To lighten the notation, let us write B,=8, , for a
bond b (ij) W. e then have

criticality, p p„;t & 0 and E E„;t& 0, so

p~~(1) ~ 1 —const/CH .

This is the key inequality.
We now use general facts about reversible Markov

chains, based on studying Psw as an operator on the Hil-
bert space L (W,„„i) defined by the inner product
(A, B)—= (AB). Note first that

(~~ (PbondPspin ) ~) (~& (PspinPbondPspin ) ~)

for each t~0, since Pspin Pspin and PspinJV PspinJV'

=JV. Thus, the correlation functions of JV under Psw
are the same as those under Psw=—Psp, nPbondPsp;n. This
latter operator is a positive-semidefinite (in particular
self-adjoint) contraction on L (W„„„i), so we have a
spectral representation

t 1

p~~(t) ) I I dv(k)

with a positive measure dv(X). It follows that

p (t) p (I) I'I.

&nb (t 0)nb'« -0)& -pbpb'&&. ,~., &

and hence

&nb(t -0);nb(t -0)& -pbpb(&. ,;&,.&.

On the other hand, for b -b' we clearly have

&nb(t 0);nb (t 0)& (nb& —
&nb&

-Pb&b, ) -Pb'(8, &'.

Consider now the usual case in which

(5)

where (A;B)—= (AB) —(A)(B). We have thus expressed a
dynamic correlation function of the SW algorithm in
terms of a static correlation function of the Potts model.

Now let us compute the same quantity at time lag 0:
By (3), for b pub' we have

Defining now the integrated autocorrelation time'

zini, ~= 2 X p~~(t)
f ~ —oO

and the exponential autocorrelation time

zegp ~ llmIsI-- Inp~~(t) '

we conclude that

1 I+p~~(I) ~ const x CH
2 1 —p~~&1

and

zexp, A ~ ~ )
~ coilstx CH .

lnp~~ (1

(9)

(lo)

p for bEB,
0 otherwise,

for some family of bonds B. Combining (4)-(6) and
summing over b, b', we obtain

&JV(t -0);Ã(t- I)& -p'&8;8&,

&w(t -0);w(t -o)) -p'(@g &
—p(1 —p) &@&,

where 8—= pb c sb, ~ 0 is the en—ergy. Hence the nor-
malized autocorrelation function at time lag I is exactly

In terms of the critical exponents defined by z;„,~—be""',

z.„,~-b "', and CH-& " [or L '"', L '*', and L't" for a
system of linear size L ( oo at criticality], we have

~int~~exp —iz/v ~

For a first-order transition, Eqs. (9) and (10) imply that
z ~ const xL; the expected behavior is z —exp(cL" ').

These same bounds hold for the autocorrelation func-
tion of the energy 6'. In fact, we have the identity

(@~(PbondPspin) @) P (~ (PspinPbondPspin)

(12)

for each t ~ 0, since —P8 PbondJV =PbondP, p,„JV. It
follows easily that(7)

(w(t -0);w(t -1)) —(1 —p)Ep~~(I ) —=

(w(t -o);w(t -0)) pcH (1 —p)E '—
where E= V'(8) is the mean —energy and CH
—= V '(8;8) is the specific heat (V is the volume). At

p~~(t +I)
per«) - . )

~ p~~(t).
paw&&

(13)
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TABLE I. Comparison of zsw with the rigorous lower bound a/v. Estimates of zsw are tak-
en from Table II of this paper (d-2, q-3, 4), Ref. 2 (d=2, 3, q-2), and Ref. 7 (d-4, q-2).
Error bars on zsw are 95% confidence intervals. Values of a/v are taken from Refs. 8 and 9.

zsw
a/v

d 2
q~2

=0.35
P x log

d 2

q 3

0.55 +' 0.03

d=2
q 4

0.89 ~ 0.05(!)
1x log

d 3

q 2

=0.75
0.165 ~ 0.02

d 4
q~2

=1
Pxlog'"

TABLE II. Integrated autocorrelation times for the SW al-
gorithm on two-dimensional Potts models at the bulk critical
temperature J„;t ln(1+q 't ). All runs are 500000-1000000
sweeps; the first 5000 sweeps are discarded for equilibration.
Standard error is shown in parentheses. Error estimates on

zsw include statistical error only.

16
32
64

128
256

zsw

q~3
&int, 8

9.0(0.2)
14.0(0.4)
19.3(0.6)
30.3(1.2)
39.6(1.7)
0.55 (0.02)

&int, 8

19.1(0.6)
36.7 (1.6)
62.9(3.5)

115.7(6.1)
232.0 (24.6)

0.87(0.02)

q 4
&int, JV

17.7(0.5)
34.8 (1.4)
60.8 (3.3 )

113.2(5.9)
229.2 (24.2)

0.90(0.02)

Relations analogous to Eqs. (12) and (13) hold in fact
for any observable A(fn}) and the corresponding im-
proved estimator A =Pb,„dA —=Pb,„dP,~;,A [or A (jr' )
and A =P,r,„A —P,~;„Pb,„dA]. They show that the nor-
malized autocorrelation function (hence the autocorrela-
tion time) of A is larger than or equal to that of A, while
the unrenormalized autocorrelation function (hence the
error bar on the static mean) of A is strictly smaller than
that of A (but not much smaller if r;„t g »1.

In Table I we compare numerical estimates of zsw
with the known values (exact or approximate) of a/v.
The bound zsw~ a/v is clearly far from sharp for the
Ising models (q 2); in particular, it fails to elucidate
why (apparently) zsw 1 for d~4. ' On the other
hand, the bound is quite strong for the two-dimensional
three- and four-state Potts models. Indeed, the bound
contradicts the numerical estimate for the four-state
Potts model (see below for discussion).

Our raw data for the two-dimensional Potts models
are presented in Table II. All runs are 500000-1000000
sweeps; the first 5000 sweeps are discarded for equilibra-
tion. We verified the identity (7) to high precision. The
integrated autocorrelation times r;„t @ and z;„&~ are es-
timated by standard procedures of statistical time-series
analysis. " The exponent estimates zsw are obtained by
least-squares regression with a pure power law.

The anomalously low estimate of zsw for q =4 is most
likely caused by multiplicative logarithmic corrections.
The specific heat CH is known to behave as

-L/log3/2L, which could masquerade as a pure power
L = ' for the range of L values considered here. Indeed,
a power-law fit to our estimates of CH yields the ex-
ponent a/v-0. 75(0.01). It appears that r is rising
slightly faster than CH, but we are unable to distinguish
between zsw & 1 and zsw 1 with a smaller inverse
power of logarithm. Accurate measurements on very
large lattices could be useful. It is important for concep-
tual purposes to know whether the bound (11) is sharp
for q-4.

The bound r~ constxCH can also be proven for the
single-bond heat-bath algorithm' for the random-
cluster model, at least with random (rather than sequen-
tial) bond updating. It would be interesting to know
whether this algorithm belongs to the same dynamic
universality class as the Swendsen-Wang algorithm.
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