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Periodic-Orbit Quantization of Chaotic Systems
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We demonstrate the utility of the periodic-orbit description of chaotic motion by computing from a
few periodic orbits highly accurate estimates of a large number of quantum resonances for the classically
chaotic three-disk scattering problem. The symmetry decompositions of the eigenspectra are the same
for the classical and the quantum problem, and good agreement between the periodic-orbit estimates and
the exact quantum poles is observed.

PACS numbers: 03.65.Sq, 05.45.+b

It is a characteristic feature of dynamical systems of a
few degrees of freedom that the motion is often organ-
ized around a few fundamental cycles Thes. e short cy-
cles capture the skeletal topology of the motion in the
sense that any long orbit can approximately be pieced to-
gether from the fundamental cycles. Moreover, many
quantities of interest can be computed as averaged over
periodic orbits. In Ref. 1 a highly convergent expansion
around short cycles has been introduced and applied to
evaluation of classical chaotic averages. The goal of this
Letter is to demonstrate that the curvature expansions'
of periodic-orbit sums are an equally powerful tool for
evaluation of quantum resonances of classically chaotic
systems.

In this approach, the averages over chaotic dynamical
systems are determined from the zeros of dynamical g
functions, defined as expansions of infinite products of
the form

tv(s) -Av 'e (2)

Here Tp is the period of the prime cycle p and pp- in(A~) is its stability exponent, where A~ is the lead-
ing eigenvalue of the cycle Jacobian. The associated

with weight t~ associated to every primitive (nonrepeat-
ing) periodic orbit (or cycle) p. The key observation is
that the expanded product allows a regrouping of terms
into dominant fundamental contributions and decreasing
curvature corrections. Computations with g functions
are rather straightforward; typically one determines
lengths and stabilities of a finite number of shortest
periodic orbits, substitutes them into (1), and estimates
the zeros of (1) from such polynomial approximations.

We shall apply here the expansion (1) to evaluation of
repeller escape rates. The classical repeller escape rate y
is determined' ' by the largest zero of I/g(s) (s real)
with each prime cycle weighted by

quantum amplitude is essentially the square root of the
classical weight. This follows from the stationary phase
formula for determining the poles of the scattering
matrix in terms of cycles, rewritten as the logarithmic
derivative of the infinite product of g functions Z(k)

op~ '(k), where the weights of the prime cycles
for the different gj's are

tP expl pp( —,
' +j—)+(i/h)Sp(k)+ittvp/2], (3)

where S~(k) is the action and v~ is the Maslov index (in
the three-disk example considered below, k is the quan-
tum wave number). The zeros of Z(k) in the complex k
plane determine the eigenvalues or resonances of the
quantum system; here we shall compute only those
closest to the real energy axis, which are given by the
zeros of I/$0(k).

As it stands, the Euler product (1) is a product over
an infinity of prime cycles or arbitrary length, and its
utility as a computational tool is far from obvious. It is
one of many formally equivalent cycle-averaging expres-
sions, and its connection to the Gutzwiller periodic-orbit
sum has been known for some time. ' What has not
be recognized is that the intuition derived from classical
chaotic dynamics' singles out one particular expansion,
exploiting the fact that long periodic orbits can be ap-
proximated by short ones.

More precisely, there are two types of contributions to
the curvature expansion (1): a set tf of fundamental
periodic orbits and an infinite series of curvature correc-
tions c~. The fundamental cycles have no shorter ap-
proximants; they are the "simplest" cycles in the sense
that all longer orbits can be pieced together from the
fundamental cycles as fundamental building blocks. The
curvatures are differences of long orbits and their esti-
mates based on shorter orbits [see Eq. (5) below]. They
account for corrections as one resolves the dynamics on
longer and longer times, i.e., finer and finer resolution in

phase space. In averages dominated by positive entropy
of unstable orbits, these diA'erences decay' exponen-
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tially and the curvature expansions are expected to be
highly convergent.

Here we shall illustrate the convergence of curvature
expansions by computing the classical escape rates and
quantum resonances for scattering off three disks" (we
refer the reader to Refs. 9, 12, and 13 for detailed dis-
cussions). In this model the classical motion can be visu-
alized as a pinball bouncing in a plane between three
equally spaced disks of equal radius, and the quantum
dynamics is described by wave functions which vanish on
the boundaries of the disks. For billiard motion the
momentum vm - l1k (2E/m) 't is constant, the action
S~(k) is given by hkL~, where Lp is the length of the cy-
cle p, and the quantum amplitude (3) associated with
the cycle p is simply t~ i A~ i

't exp(ikL~+in~rr).
Here n~ is the number of bounces, and comes from the
phase loss at every reliection (the boundary condition is

iver I disk

We have chosen here the three-disk scattering system
because it captures the essential topology, stability, and
phase-space structure of cycles in 2D nonintegrable po-
tentials without the complication typical of motions in

generic smooth potentials (pruning of the symbolic dy-
namics, intermittency effects due to marginally stable or-
bits; we shall return to these elsewhere). The dynamics
here is geometrical optics, so the cycles are faster to
compute than for arbitrary smooth potentials, and we
were aided much by the work of Gaspard and Rice in
checking our results.

The prerequisite for efficient use of curvature expan-
sions is firm control of the symbolic dynamics. ' For
sufficiently separated disks, the symbolic dynamics is a
ternary dynamics with alphabet 11,2, 3) (the label of the
disk the pinball bounces off) and a single pruning rule
prohibiting consecutive repeats of the same symbol. "
The corresponding curvature expansion (1) is straight-
forward, and converges well. ' However, the C3, point
group invariance' of the three-disk problem simplifies
and improves the curvature expansions in a rather beau-
tiful way, which we now brieAy sketch. The prime cycles
fall into three classes of distinct symmetry; those invari-
ant under rotations by 2n/3 (multiplicity 2), those in-

variant under reflections on symmetry axes (multiplicity
3), and the rest (multiplicity 6). By use of the standard
character tables' it can be shown' that the correspond-
ing contributions to the Euler product (1) factorize as
follows:

(I —t ) (I —t 't3)(I —t 'i )(I+t 't3+t2t3)2

(1 —t ) 3 (1 —t &t2) (1+t it2) [I —(t &t2) 2] 2 (4)

(1 —t~) ' -(I —t~) (I —t~) (I —t~) 4.

The three factors in this product contribute to the Cq„ ir-
reducible subclasses A&, A2, and E, respectively, and the
three-disk ( function factorizes into ( (4.( (F.. Be-
cause of the symmetry, any three-disk cycle can be

FIG. 1. The scattering geometry for the disk radius to sepa-
ration ratio a:R 1:2.5. (a) The three disks, with 12, 123, and
121232313cycles indicated. (b) The fundamental domain, i.e.,
a wedge consisting of a section of a disk, two segments of sym-
metry axes acting as straight mirror walls, and an escape gap.
The above cycles restricted to the fundamental domain are now
the two fix points 0 and 1 and the 100 cycle.

pieced together from segments passing through the fun-
damental domain (see Fig. 1). The tP and tP ' weights
in (4) have direct physical meaning: They are the
weights of the corresponding cycles restricted to the fun-
damental domain.

Restriction to the fundamental domain also simplifies
the symbolic dynamics: It becomes binary, with no re-
strictions on allowed sequences. "' ' The ternary
three-disk [1,2, 3) labels are converted into the binary
fundamental domain labels (0, 1) by marking the back-
scatter by 0 and scatter to the third disk by 1. For ex-
ample, 23 . . . 232323. . . maps into . . . 000. . . =0
(and so do 12, 13), 123 . . . 12312. . . maps into
. . . 111.. . 1, and so forth (see Fig. 1).

The Euler product (1) on each irreducible subspace is
easily evaluated using the factorization (4). On the sym-
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metric A 1 and the antisymmetric A2 subspaces, the g+ and g —are given by the standard curvature expansion for the
binary dynamics 7

I/g~ (1 ~ Ip) (1 —t 1)(1 +' r 1 p) (1 —r 1 pp) (1 ~ r 1 pl ) (1 +' I 1ppp) ' ' '

I ~ rp r 1
~ (rip rlrp) (r lop riprp) ~ (rlpl I lpr 1) (r lppl r lrppl rlplrp+rlprpr 1)

while for the mixed-symmetry subspace E the curvature expansion is given by

I/gE (1+t 1+t 1 ) (1 —t 11 )(1+r lpp+ t 1 00) (1 —t lp )

1+~1+(rl ~p)+(~100 ~t&p)+rtppl+(~100 &l~p)~1 ~lp ' ' '

(5)

(6)

Given the curvature expansions (5) and (6), the calcu-
lation is straightforward. Following Ref. 9, we set the
disk radius a-l, fix the disk-disk center separation
R 6 (for the sample values listed here), compute the ei-
genvalues and lengths of prime cycles up to five bounces
(total of fourteen cycles), substitute them into the curva-
ture expansions, and determine the complex zeros; some
hundred quantum resonances are easily determined, '

with accuracy as good as seven significant digits for the
resonances closest to the real axis. A detailed discussion
of this spectrum will be presented elsewhere here we
only wish to illustrate the quality of the curvature expan-
sions. In Table I we list a few typical results, illustrate
their convergence by computing them with different
maximal length cycles, and compare them to the numeri-
cal solutions for poles of the exact quantum scattering
matrix. ' The convergence of the curvature expansions
is striking; they are many order of magnitude more accu-
rate than the estimates by other methods, and the gain in
e%ciency is dramatic: While the quantum scattering
matrix requires computation of large truncations [of or-
der of (70x 70)] of infinite matrices with Bessel-
functions entries, the curvature expansions require evalu-
ation of some dozen complex exponentials and a couple
of sums and differences. The judicious use of symmetry
helps considerably; for example, going to the fundamen-

tal domain often doubles the number of significant digits
for a given cycle length. The estimates could be further
improved by extrapolations and knowledge of the
analyticity properties of I/g, e.g. , the positions of
poles. '"

No poles of the infinite product can occur within the
half-plane of absolute convergence. ' This also leads to
an upper bound on the resonance lifetimes. The abscissa
of absolute convergence can be determined as the leading
zero of (5) with t~ replaced by i t~ i; Im(k) for all zeros
of I/g must lie below k, (for the present a:R 1:6 exam-
ple, k, —0.121557. . . ). The convergence of the cur-
vature expansion is best near k, (the longest-lived reso-
nances) and deteriorates as one moves further in the
imaginary k direction. As Rek grows, the density of res-
onances increases. Implications for the curvature expan-
sion are that a certain number of terms have to be in-
cluded before two resonances are distinguished; thereaf-
ter one again observes rapid convergence. This is illus-
trated in Table I for the resonances k2 and k3, which
have the same n 1 approximation.

The explicit curvature expansions like (5) and (6)
perhaps make it easier to explain our introductory claims
about the exponential convergence of curvature expan-
sions. A typical curvature expansion term involves a

TABLE I. Representative classical escape rate and quantum resonance results, illustrating the convergence of the curvature ex-
pansions. The calculations listed here are for disks with ratio radius to separation a:R 1:6. The first column gives the maximal cy-
cle length used, the second the estimate of the classical escape rate from the full three-disk expansion, and the third from the funda-
mental domain expansion. For comparison, numerical simulation (Ref. 9) yields y 0.410. . . , and the n 2, 3 approximations of
Ref. 9 yield 0.3102, 0.4508, respectively. The remaining columns illustrate convergence of "typical" quantum resonances from the
A |subspace. For comparison, the exact quantum values (Refs. 9 and 12) are given in the last row; the n 3 approximation of Ref. 9
gives k I 8.354-i0.342.

Escape rate
Full three disks Fund. dom. Re(k |) Im(k 1)

Quantum poles
Re(k2) Im(k2) Re(k, ) Im(k 3)

0.435 78
0.40491
0.409 45
0.41037
0.41034

0.407 693
0.410280
0.410336
0.410338
0.410338

8.359 54
8.267 84
8.275 49
8.276 62
8.27640

—0.321 03
—0.283 54
—0.275 76
—0.276 96
—0.277 12

27.361 17
27.259 48
27.258 83
27.259 22
27.259 25

—0.15486
—0.16044
—0.155 87
—0.15561
—0.15562

27.361 17
27.68086
27.673 31
27.670 15
27.669 56

—0.15486
—0.361 48
—0.338 37
—0.335 56
—0.335 31

Exact 8.2611 —0.2749 27.2548 —0.1555 27.6661 —0.3340
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long cycle fabfl minus its shadowing approximation by
shorter cycles fat and tb}:

t,b
—t, tb t,b(1 —t, tb/t, b)

-t.b ftl exp—( np—.b/2+ ikaS.b )],
where ~pab ga+ pb gab and ~Sab =Sa+Sb Sab.
The exponential falloff of curvatures is a consequence of
the smallness of the term in the brackets; hp and hS are
exponentially small for long orbits, ' typical O(e "").
Therefore, to resolve some scale h, k, one has to keep all

difference actions & I/hk. Their number increases like
(Ak) "+, i.e., roughly linearly (if the topological entropy
h equals the average Lyapunov exponent X), and not ex-
ponentially, as one might expect naively.

To summarize, we have demonstrated that the curva-
ture expansions are a very e%cient way of evaluating the
classical and quantum periodic-orbit sums. The essential
ingredient for this success has been the physical insight
that the dynamical g functions expanded this way utilize
the shadowing of arbitrarily long orbits by shorter cycles;
the technical prerequisite for implementing this shadow-
ing is a good understanding of the symbolic dynamics of
the classical dynamical system. Exploiting the sym-
metries of the problem, we are able to compute accurate-
ly a large number of resonances, using as input the ac-
tions and eigenvalues of as few as 2-14 prime cycles.

We conclude with three more general comments on
the relation of classical and quantum chaotic dynamics.

(1) The curvature expansion approach presented here
applies to strongly chaotic (nonintegrable) systems, and
is thus a quantization scheme for a class of systems corn-
plementary to those amenable to torus quantization. (2)
The symmetry factorization (4) of the dynamical g func-
tion is intrinsic to the classical dynamics, and not a spe-
cial property of quantal spectra (in which context it was
used before ). (3) For the strange sets studied in Refs. 1

and 7, the curvature expansion is believed to be the exact
perturbation expansion for classical chaotic averages:
Even though each cycle carries with it only its linearized
neighborhood (analog of the stationary-phase approxi-
mation in the derivation of the quantum Gutzwiller
sum), the union of the periodic points captures the in-

variant content of the full underlying smoothly curved
dynamics. We expect similarly the quantum curvature
expansion to overcome the limitations due to the lineari-
zation around the individual trajectories.
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