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We present a simple new effective-field theory for the metallic state of a disordered interacting Fermi
liquid, taking into account its instability towards the formation of local-moment states. We find a gen-
eralization of the compensation theorem of the single-impurity Anderson model, namely, that strongly
localized magnetic instabilities occur even when the mean-field single-quasiparticle states are extended.
The theory clarifies the understanding of recent thermodynamic and spin-resonance measurements in

phosphorus-doped silicon.

PACS numbers: 71.30.+h, 72.10.Fk, 75.20.Hr

Many theoretical analyses'> have recently addressed
the subject of the metal-insulator transition (MIT) in a
disordered interacting-electron gas. Using a renormal-
ized weak-disorder perturbation theory, but including
the effect of interactions exactly within lowest order in
disorder, these investigations have led to an understand-
ing of many transport properties in the disordered metal-
lic phase. However, these theories remain unsatisfactory
in explaining the low-temperature thermodynamics as
well as the region near the MIT.3>”7 Here we present a
new mean-field theory of the disordered metallic state.
Our theory is directly motivated by experiments on
doped semiconductors and should serve as an improved
starting point for a complete theory of the MIT.

We take a point of view that is complementary to re-
cent approaches;? we treat the noninteracting disordered
Hamiltonian exactly in a numerical calculation, but ac-
count for the interactions in a Hartree-Fock-type approx-
imation.® Such an approach is crucial in accounting for
the instability of an interacting-electron gas towards the
formation of localized magnetic states.® This instability
is not directly apparent in a disorder perturbation theory
even though it can occur for weak disorder. Additional
motivation comes from the understanding of the insula-
tor through magnetic and optical measurements in doped
semiconductors'® where a correct treatment of disorder
effects was crucial.

We discuss our approach in the framework of a disor-
dered Anderson-Hubbard model,

H=- ; tijCiLCjo'*'ZUnm”ii + 2 (e —weiheio,
i=j, o i io
where i,j extend over all the sites in the system (not
necessarily on a lattice), n,—o=c,";c,-o, and o is the spin in-
dex. The off-diagonal disorder in the hopping matrix
elements ¢;; will produce local environments favoring the
formation of local moments; we present below a theoreti-
cal criterion for this to occur. The on-site energies ¢; are
weakly random variables [((¢; —(€;))?) < max(z;;)]. We
find that an appreciable number of local moments can
occur in weak disorder under conditions in which the
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mean-field single-quasiparticle states near the Fermi lev-
el are extended. The localization length of the local mo-
ments appears to be finite even in the metallic state; this
strong localization may be viewed as a generalization of
the compensation theorem® for the single-impurity An-
derson model.

We begin by reviewing a well understood special case
of H; the single-impurity9 Hamiltonian Hs. We obtain
Hs by placing sites 7,j on a cubic lattice with hopping
matrix elements ¢;; =t for all nearest-neighbor bonds ex-
cept for the six bonds connected to the impurity site O,
for which zo; =t;,0=w. We choose a density of one elec-
tron per site (¢, =0, u=U/2). For w=0, a single elec-
tron at the origin has energy — U/ 2, while a second elec-
tron will cost energy U/2; for small w, therefore, the
model is related by a canonical transformation to the
symmetric Anderson model. Using the extensive numer-
ical and analytic renormalization-group analyses'' on
this model, the temperature dependence of the local spin
susceptibility of the site 0, yo, can be obtained (Fig. 1).
At high temperatures, 7> U, interactions are irrelevant
and yo=(gug)?/8kT. For T <U two types of behavior
occur. (i) For small w, o is enhanced to (gug)?/4kT at
intermediate temperatures due to the formation of a lo-
cal moment at the origin, but is eventually quenched by
the Kondo effect at T« Tk (the Kondo temperature).
(ii) For larger w one obtains a Fermi liquid'? and the
susceptibility is directly quenched via the onset of the
Pauli spin susceptibility. The boundary between these
two types of behavior sketched in Fig. 1 is obtained as
described below.

Some features of the local-moment formation deserve
mention. (i) The Hartree-Fock calculation is adequate
to determine the boundary between the local-moment
and Fermi-liquid regimes.!! The Kondo effect, which
needs renormalization-group methods, only becomes im-
portant at T < Tk. (ii) In the Fermi-liquid regime, we
may perform a nonmagnetic Hartree-Fock factorization
of Hg to obtain (HS)HF=ZI,»I»C,-’;C,-(,. (Hs )y is a single-
impurity Hamiltonian which can be exactly diagonalized
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FIG. 1. Phase diagram of the single-impurity Hubbard

Hamiltonian Hs; all the nearest-neighbor hopping matrix ele-
ments are ¢ except those of the impurity site, which are w. The
dark line, representing the crossover between the Fermi-liquid
and local-moment regimes is determined by an effective-field
calculation at T=0.1w for a 6 X6 X6 cube with periodic bound-
ary conditions (the finite temperature rounds out the diver-
gence in the susceptibility arising from particle-hole symmetry;
this divergence is clearly special to Hs). The two regimes are
characterized by an impurity spin susceptibility yo of the forms
shown in the insets.

by elementary methods; all eigenstates are extended with
the impurity merely providing a scattering phase shift.
The electron local-moment state is associated with a res-
onance peak at the Fermi level in the local density of
states at the origin.’ (iii) The temperature range
Tx <T KU can be quite large for a single impurity. Es-
timates for Tk in doped semiconductors indicate that it
is well below the temperature range that has so far been
accessed in experiments. Moreover, it has recently been
argued that in a disordered system the effective Kondo
temperature T is zero.®

We now apply the above ideas to the disordered metal
described by the fully random H. Assuming that the
process of local-moment formation is similar to that in
Hg, we see that in the temperature range Tx <T <U
the physical properties can be understood by a mean-
field treatment of interactions while treating disorder ex-
actly. We use a variant of the effective-field method '?
by finding the single-particle Hamiltonian H.y which
best approximates the properties of the interacting sys-
tem (the response functions obtained from such an ap-
proach are guaranteed to satisfy all the conservation
laws of the system'3):
Hep(é:,h) =— Z lijCiLCjo"'Z(gi —Hu )eihcio +Yh;-S; s

i.j.,o i,o i

where S,-V=c,-:',aav,;c,-[,/2 is the spin of the electron at site i
(0" are the Pauli matrices). The Hamiltonian H.g is a
function of the variational parameters € and h; repre-
senting the local site energy and the local magnetic field,
respectively. The true free energy F is bounded above by
Fer=(H)ex— TS, where (H ). is the expectation value

of H in the canonical ensemble defined by H s and Seg is
the entropy of H.r at a temperature 7.'3 Consequently,
the best variational wave function built up as a Fermi
sea of quasiparticles is given by minimizing F.s with
respect to € and h;. As h; =0 at high T, we expand to
lowest order in the h;. Let A, be the eigenvalues and
¥,(i) be the corresponding wave functions of Heg with
h; =0. Then the condition that F.;(&,h; =0) be a local
minimum with respect to € yields the self-consistency
equation

E=e+UX | ¥, (D] ), (¢))

where f is the Fermi function. This equation can be
solved to determine the values of é. Expanding to
second order in the h;, we obtain

Fer(€,h;) =Fcx(é,h; =0)

+ 3 206 Uy i b)) +0 1)
ij.k

where

SO = fOp)

= @)

Xij=— 2V DVFOVF (s
a.p

is the spin susceptibility of free electrons described by
H.y. Let us denote the eigenvalues of the matrix y;; by
mq(i) and the corresponding eigenvalues by x, li.e.,
X ixiima(j) =x.my()]. It is clear from Eq. (2) that h;
will first become nonzero when max(x,) becomes larger
than 1/U. The distribution of the magnetization corre-
sponding to this instability will be given by the eigenvec-
tor m, (i) associated with the largest eigenvalue.

For the single-impurity Hamiltonian Hs at half-filling,
particle-hole symmetry gives the constraint u=¢& =U/2;
the self-consistency equation (1) is therefore trivially
solvable. We found numerically that the eigenvalues of
xi; form a continuous band with a single eigenvalue, kg,
split off from the top of the band; thus x5 =1/U deter-
mines the boundary line in Fig. 1 for the formation of a
local moment. For small w, the eigenvector m;(i) asso-
ciated with the largest eigenvalue kg is localized around
the origin. This occurs even though all of the eigenstates
of Hew, ¥,(i), are extended. The localization of ms(i) is
closely linked to the compensation theorem of Anderson®
which is valid in the limit of infinite bandwidth.

Returning to the disordered Hamiltonian H, we focus
on a particular realization of the disorder, motivated by
the doped semiconductors such as phosphorus-doped sil-
icon (Si:P). It consists of sites placed randomly in space
at positions r;; ¢;; are given by the Heitler-London ap-
proximation for 1s hydrogenic wave functions'® |z; |
=2¢0(1+ Irfjl/a)e_lr”l/", where r;=r;—r;, a is the
Bohr radius, and zo=1 Ry. Using the binding energies
of the H atom and the H ™ ion we get U=0.95 Ry; con-
sequently, we use U/to=1 in our calculations. Choosing
a larger (smaller) value of U/t increases (decreases) the
number of local moments obtained at a given density but
does not affect our conclusions qualitatively. We as-
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sumed that ¢; was distributed uniformly between —10/10
and 70/10 (the results were quite insensitive to the pres-
ence of this diagonal disorder as long as the width of the
distribution of the ¢ was not of order #¢). In Si:P, the
donor electrons are bound to phosphorus nuclei in 1s-like
states derived from many conduction-band minima. In-
terference between various silicon band wave functions
leads to a random sign in the hopping matrix element, '’
a feature which we include by assigning a random sign to
each ¢;;. The MIT for this Hamiltonian is expected to
occur near the canonical Mott value p=p, given by
pca’=0.016.'"%'" We therefore performed our calcula-
tions at densities around this value with electron filling
factors between 0.4 and 1 electron per site for sizes be-
tween 50 and 300 sites placed randomly in a cubic box.
The system was periodically continued in all directions,
and the t;; were computed using the shortest distance be-
tween every pair of sites. We averaged between 5 and 20
samples for each size, density, and filling factor.

The first step was solving the self-consistency equation
(1) iteratively for the renormalized local site energies.
For a density of 1 electron site, we find u = é; = U/2 in-
dicating the presence of an average particle-hole symme-
try (the particle-hole symmetry is not exact because of
the presence of loops with an add number of sites). The
next step was the evaluation of the matrix y;; using Eq.
(2) and its diagonalization (the computer time required
to initialize the matrix x;; limited the size of the system
we could simulate). We determined the eigenvalues «,
and the corresponding eigenvectors m,(i) of x;;. All ei-
genvalues of y;; satisfying x,> 1/U represent potential
local-moment instabilities. To ensure that these repre-
sented independent local moments [i.e., the eigenvectors
m,(i) were localized and well separated from each oth-
er], we evaluated the cross inverse participation ratio

z,' Ima(i) [ 2 | m;;(z) | 2

X [ ma@) | *172LE, [ mp() | 41172

Only the larger of a pair of eigenvalues x, and x; with
P,3> P, was accepted as representing a local moment.
We chose values of P,, between 0.1 and 0.5. Variations
of P, in this range produced relative changes in the
number of local moments which varied from < 1% at
high temperatures and high densities up to ~25% at the
lowest temperatures and densities.

We first discuss the case of a density of 1 electron per
site (this corresponds to uncompensated Si:P). The cal-
culations were carried out at temperatures of 7 =0.17¢
and 7 =0.01¢¢ for a number of sample sizes and densi-
ties. We found that, at a fixed density of electrons, the
number of local moments was quite accurately propor-
tional to the total number of electrons for system sizes
greater than twenty sites. This is as would be expected if
the system size is much greater than the localization
length of the local moments. The ratio of the number of
local-moment instabilities to that of electrons was found
to increase monotonically with decreasing density from

Paﬁ=
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FIG. 2. Mean inverse participation ratio Py of the eigenvec-
tors ¥, (i) of H, and P, of the eigenvectors m,(i) of x, at a den-
sity pa®=0.02, and the filling factor = 1 for different sizes.
We used an upper cutoff P, =0.5 for the cross inverse partici-
pation ratio P,s. The values of P, are shown at two tempera-
tures (measured in units of 7o); they are independent of system
size suggesting that the eigenvectors my,(i) are localized.
Values of Py show no appreciable 7 dependence and decrease
with system size suggesting that the ¥,(i) are extended.

1% at pa®=0.03 to 16% at 0.01. We show below that
the (spin) localization length associated with the local
moments is not directly related to the (charge) localiza-
tion length of the electrons, and is much smaller than it.

We also studied the properties of the single-particle
wave functions, ¥,(i), and the eigenvectors, my(i), of
xij- Although there is no simple relationship between
these two sets of eigenvectors, our experience shows that
every eigenvector m,(i) which is localized around the
site ry (say) is associated with an eigenvector ¥,(i)
which is peaked at ry and has an eigenenergy close to
the Fermi level. Exactly the same correspondence is
present in the single-impurity Hamiltonian Hg. We
evaluated the inverse participation ratios Py,
=3, |v, ()| *and P, =X;|m,(i)|*. We plot in Fig. 2
the average of Py,, Py ={Py,’ over many samples and
for states within 0.1z of the Fermi energy for a fixed
density of electrons pa®=0.02. On a log-log plot, Py
decreases monotonically as a function of the number of
sites in the system with a slope ==0.73, which is reason-
able since the correlation length is comparable to system
size, and is evidence that all the states within 0.17¢ of the
Fermi level are extended. For the same samples, the be-
havior of P,=(P,, is quite different. It remains in-
dependent of the system size at a value of around 0.5
(for T=0.01¢¢) showing quite convincingly that all of
the local-moment states are localized on length scales of
order the spacing between the sites (at higher tempera-
tures P, increases towards its 7 =oo limit of P, =1).

All of the above discussion has concentrated on an
electron filling factor of 1 electron per site. As in the
single-impurity Anderson model, this is the most favor-
able condition for the formation of local moments. To
explore the consequences of changing the number of
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FIG. 3. The ratio of the number of local moments to the to-
tal number of electrons, fim, as a function of filling factor for a
constant density of electrons pa®=0.02 at two different tem-
peratures (measured in units of 7o).

electrons per site we repeated all of the calculations with
decreasing values of the chemical potential u down to a
filling fraction of 0.25. We show in Fig. 3 results for fn,
the ratio of the number of local-moment instabilities to
the total number of electrons, as a function of filling fac-
tor for a constant density of electrons pa’=0.02. The
value of fi, in an effective-field calculation increases
with falling temperature; at 7 =0.01¢¢, fi, is expected to
be close to its asymptotic zero-temperature value. We
see from Fig. 3 that f), is a maximum at half-filling;
however, the falloff with decreasing filling fraction is
rather gradual.

While our calculations have been done on a model
Hamiltonian, we have chosen the model to capture the
essential aspects of disorder and electron correlation. It
is thus gratifying that our estimate for the number of
local-moment instabilities of ~10% of the sites at densi-
ties within 50% of the critical density p. is in good agree-
ment with experimental estimates of 10%-25% from
NMR ? and thermodynamic® measurements. A larger
U/t suggested by Ref. 15 would in fact improve agree-
ment. We regard this agreement to be a vindication of
the basic physical picture of the phenomenological two-
fluid (the itinerant electrons and the localized moments)
model of metallic doped semiconductors.>*'”

To conclude, we have shown in this paper that a sys-
tem of interacting electrons in weak disorder displays a
strong instability towards the formation of localized mo-
ments on length scales much shorter than the localiza-
tion length of the electrons’ Hartree-Fock wave func-
tions. This phenomenon has been argued to be related to
the compensation theorem of the single-impurity Ander-
son model where competing ferromagnetic (due to the
spatial extent of the impurity wave function) and antifer-
romagnetic interactions (due to superexchange) cancel
each other, leading to a very localized spin polarization.
Any complete theory of the MIT has therefore to ac-
count for the presence of the electron local moments and
the effect of interactions between the local moments and
the itinerant electrons. Two steps in this direction have
been taken: (a) the determination of the Fermi-liquid

properties of a two-fluid model of itinerant electrons and
local moments'® and (b) the study of the very low-
temperature properties of a disordered system with local
moments.® An important question which remains open
is the precise role of the local-moment instabilities in the
critical behavior of charge transport near the MIT.
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