
VOLUME 63 21 AUGUST 1989 NUMBER 8
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A numerical technique for the characterization of the chaotic regime of dissipative maps through un-
stable periodic orbits is presented. It is shown that although the maps are dissipative their trajectories
can be derived from a Hamiltonian, which allows us to calculate unstable periodic orbits of arbitrary
length 6nding all points to any desired accuracy. Applying the method to the Henon map we And that
in a previously unexplored region of parameter space the topological entropy exhibits plateaus on which
it is constant while the dynamics is characterized by a strange repeller.

PACS numbers: 05.45.+b

Chaotic behavior in dynamical systems has been a
subject of extensive study in recent years. The transi-
tions from regular to chaotic motion have been classified
and their universal properties have been considered using
numerical simulations and renormalization-group tech-
niques. ' More recently, the emphasis has shifted to the
chaotic regime itself. In dissipative systems this re-
gime is characterized by strange attractors. The trajec-
tories on the attractor exhibit positive Lyapunov ex-
ponents, and therefore they are exponentially sensitive to
the initial conditions.

Recently, it was suggested that strange attractors can
be studied by considering the unstable periodic orbits as-
sociated with them. Such orbits provide a hierarchi-
cal framework, based on their lengths, which is useful in
calculations of dimensions and entropies. In order to
perform such calculations one has to find the set of all
periodic orbits up to as high an order as possible. A nu-
merical algorithm for the calculation of periodic orbits of
a given map was proposed, which is based on the
identification of approximate orbits from a set of trajec-
tories of the map and subsequent improvement by New-
ton-Raphson iterations.

In this Letter we present a new algorithm, which al-
lows the calculation or arbitrarily long periodic orbits to
any desired accuracy, for a certain class of maps. It al-
lows us to identify the periodic orbits of a given order
and calculate any particular one. The method is applied
to the Henon map, for which we compute all periodic or-
bits up to order p 28 (for a 1.4, b 0.3), and selected

Hk —,
' gb "(dx„/dt) (2)

orbits up to order p-1000. We demonstrate that the
method is useful even in the previously inaccessible re-
gion 1.42 & a & 2.65, b 0.3 (Ref. 10), where we show
that the map exhibits a strange repeller. Strange repell-
ers are useful in the study of transient chaotic behav-
ior. " Using our technique we have computed the topo-
logical entropy and estimated fractal dimensions in both
the attractor and the repeller regions.

Our method is based on the observation that the dy-
namics of maps such as the Henon map, although dissi-
pative, can be derived from a Hamiltonian. This Hamil-
tonian is constructed in such a way that its spatial behav-
ior is equivalent to the temporal behavior of the map. In
particular, it is shown that there is a one-to-one cor-
respondence between the trajectories of the map and the
extremum static configurations of the Hamiltonian. This
equivalence applies in both the regular and the chaotic
regimes. Therefore, by calculating the extremal config-
urations of the corresponding Hamiltonian, unstable tra-
jectories of the map can be found to any desired accura-
cy even in the chaotic regime.

We now illustrate the method in the case of the Henon
map. We find that the Hamiltonian associated with this
map (i.e., for which the static Euler-Lagrange equations
reproduce the map) takes the form'

H Hk+Hp (1)

where the kinetic term is
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and the potential is

H~ -g( b—) "[x„(x„~(
—x„-()

—(b '+1)(ax„——,
' x,')] .

This Hamiltonian can be interpreted as describing an
infinite chain of atoms interacting with a potential and
among themselves. Here, x„ is the position of the nth
atom while a & 0 and 0 & b ~ 1 are parameters. In this
Letter we are interested only in static extremum con6g-
urations of (1) and therefore the kinetic term Hk will be
neglected. ' '" The potential energy (3) contains two
terms: The 6rst one describes the interactions among the
atoms while the second term describes the interaction
with the underlying potential. Note that the nth atom
interacts only with the (n —1)th and (n+1)th atoms,
which are not necessarily its nearest neighbors in con-
figuration space. In this Hamiltonian the ordinary cyclic
permutation symmetry x„x„+&is replaced by a lower
symmetry which is a combination of permutation and a
rescaling transformation of the form x„x„+~, Hk

b 'Hk, and Hz ( —b) 'H~. This property
reflects the dissipative nature of the corresponding map.
The potential (3) is not bounded from below and, there-
fore, this model does not have a ground state but only
metastable states. The force on the nth atom is given by

F„-(—b) "(b '+1)[—x„+,+a —x„'+bx„,]. (4)

When the chain is in stable or unstable equilibrium
[namely, an extremum static con6guration of (1)],
F„-0 for all n. In this case (4) is the static Euler-
Lagrange equation associated with (1). This set of equa-
tions is equivalent to the Henon map in the sense that
every trajectory of the Henon map obeys (4) with F„-O,
and vice versa. This can be easily seen by taking the
Henon map, which takes the form

x.+i -a —x'+by. , y. +i -x. , (s)
and eliminating y„ for all n.

We now show how the model (1) can be used to per-
form exact calculations in the chaotic regime of the
Henon map. In particular, consider the calculation of
periodic cycles. To find a specific extremum con6g-
uration of order p of the Hamiltonian we introduce an
artificial dynamics de6ned by

dx„/dt s„F„, n 1, . . . ,p,
where s„+1. ' Then we solve Eqs. (6) subject to the
periodic boundary condition x~+] x&. This drives the
system towards the desired extremum associated with
the given set of js„j. When the forces on all the atoms
decrease to zero the resulting structure x„, n 1, . . . ,p,
is simultaneously an extremum static configuration of
(1) and an exact periodic orbit of the Henon map.

Our aim in this calculation is to find all the periodic
configurations of order p. In these extremum config-

urations each atom can sit either at a local minimum or
at a local maximum of the energy, allowing in principle
for 2~ configurations of order p. In order to 6nd a
desired configuration one has to choose s„ 1 for all
atoms which are at local minima and s„—1 for atoms
which are at local maxima. We 6nd that such con6g-
urations are unique (namely, there is no more than one
extremum configuration with the same sequence of mini-
ma and maxima, up to cyclic permutations), and that the
method described above converges to them. In general,
given [s„j, the corresponding periodic configuration does
not always exist. In this case the atoms escape to infinity
since the potential is not bounded from below. In short,
our technique 6nds all the periodic orbits which exist and
tells which ones do not.

Consider a periodic con6guration [x„j,associated with
a specific choice of [s„j. Let us de6ne

S„(—1)"s„, n -1, . . . ,p. (7)

It turns out that for most trajectories the sequence S„
coincides with the symbolic dynamics S„of the Henon
map, which is de6ned by S„+1if x„&0 and S„—1

if x„&0. ' This connection between S„and S„has im-

portant implications since it establishes a relation be-
tween the structure of the dynamic trajectory and the en-
ergetics of the underlying Hamiltonian. Also, for the
first time it provides a systematic method for calculations
in the chaotic regime, in which one can examine any par-
ticular orbit identified by [S„j. Map iteration techniques
do not provide such a systematic framework. Moreover,
such methods can be applied only for short unstable cy-
cles since the numerical error grows exponentially with
the length of the cycle. ' Our method does not suffer
from these limitations and it can be used for arbitrarily
long cycles to any desired accuracy.

In practice we solve Eqs. (6) until either all forces be-
come smaller than a test value (

~ F„~ & e, where typical-
ly e 10 7), or the atoms escape to infinity. The pro-
cedure converges for all initial conditions as long as

~ x„~, n 1, . . . ,p, are small with respect to Ja. Since
only the final configuration is of interest it is possible to
choose a simple Runge-Kutta method with a relatively
large step size (b 0.1) to solve the equations. A similar
technique was previously applied to the study of critical
behavior in the Frenkel-Kontorova model. ' To test the
procedure we computed selected periodic orbits of up to
order p 1000. For p-1000 the Sun 3/60 computer
needs 1.3 s to find a specific extremum configuration.
Using our method we have obtained the following sig-
nificant results for the Henon map. For a 1.4, b -0.3
we calculated all periodic orbits up to order p-28
(Table I). The method allows us to eliminate the calcu-
lation of cyclic permutations as well as orbits which are
repetitions of lower-order cycles, leading to savings in

computation time of at least a factor p. We have calcu-
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TABLE I. The number of unstable periodic orbits of the
Henon map for a 1.4, b 0.3 for orders p) 10. N, (p) is the
number of orbits of order p excluding cyclic permutations and
repetitions of lower cycles, N(p) is the total number of periodic
points of order p and its divisors, and Kp(p) is the pth-order
approximation to the topological entropy.
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0.669 870
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lated the topological entropy, defined by'

Ko- lim p 'log2UV(p) —I ], (8)
p~ OO

where N(p) is the number of points which belong to
periodic orbits of order p and its divisors. We find that
the topological entropy is Ko 0.6708 + 0.0003 (see
Table I). Our results up to order 12 are in agreement
with those obtained earlier.

Previous studies of the Henon map have been focused
on specific values of the parameters, like a 1.4 and
b 0.3 where the map exhibits a strange attractor. It
was pointed out' that in some other regions, such as
1.42 & a & 2.65, b 0.3 the trajectories escaped to
infinity for all choices of initial conditions and, therefore,
no further studies have been done.

Since our method is not sensitive to dynamical insta-
bilities it is also useful in the previously inaccessible re-
gion. Here we demonstrate that, in fact, the dynamics in
this region is characterized by a strange repeller. We
construct the periodic orbits in this region and calculate
the topological entropy for orbits up to order p 15 (Fig.
1). We find that Ko is a monotonically increasing func-
tion of a. Surprisingly there are regions (such as 1.65
&a &2.0) where Ko is constant indicating that the

structure of the periodic orbits is independent of a. The
unstable periodic orbits associated with the strange re-
peller at a 1.8, b 0.3 are shown in Fig. 2. Note that
the repeller has the same folded structure as the attrac-
tor but unlike the attractor it exhibits an apparent struc-
ture of gaps.
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FIG. 1. The topological entropy of the Henon map for
b 0.3 as a function of a. Orbits of order up to 15 were in-
cluded in the calculation. Note the existence of plateaus, i.e.,
for 1.6 (a & 2, and the saturation of Ko to its maximum value
of 1 for a &2.9. Inset: The approximations to Ko with in-
creasing order p, for 5 &p & 29 (a 1.4).

We have calculated the Grassberger-Procaccia (GP)
dimensions for both the attractor a 1.4, b 0.3, and
the repeller a 1.6, b 0.3 (Fig. 3), by using all periodic
points of order 12, 15, and 18 and embedding the result-
ing sequence in a three-dimensional space. Calculating
the correlation integral C(r) (Ref. 21) we have estimat-
ed the GP dimensions as v 1.24+'0.33 (a 1.4) and
v 1.22 ~ 0.04 (a 1.6).

In summary, we have presented a useful method for
calculations in the chaotic regime of dissipative maps. In
this method one constructs a Hamiltonian such that the
set of extrema of the Hamiltonian is equivalent to the set
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FIG. 2. A repeller for the Henon map at a 1.8, b 0.3.
Comparing this figure with a corresponding figure for the at-
tractor, we note the existence of gaps in the set, which are
similar in structure to preimages of the escaping region in the
Feigenbaum map at a )4.
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FIG. 3. The correlation integral C(r) vs the distance r on a
logarithmic scale (base 10). Open (closed) circles refer to pa-
rameter values of a 1.4 (1.6), b 0.3, respectively. We used
periodic orbits of up to order 18 to construct 1834 (1232) vec-
tors of embedding dimension 3. From these data we estimate
the Grassberger-Procaccia dimensions to be v 1.24+ 0.03
(a -1.4) and v-1.22 ~0.04 (a -1.6).
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