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Segregation in Annihilation Reactions without Diff'usion: Analysis of Correlations
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We study binary one-dimensional exchange-mediated 4+8 0 reactions in the absence of diAusion.
Using the Kirkwood superposition approximation to decouple the infinite hierarchy of many-particle
densities a closed set of integrodiAerential equations is derived. A comparison to simulation calculations
shows that the approximation reproduces the correct long-time asymptotic decay of reactant concentra-
tion as well as the correct spatial correlations of the segregation pattern.

PACS numbers: 82.20.—w, 05.40.+j

Recent years have seen a drastic increase in interest in
the A +8 0 reaction scheme, following the realization
that segregation of like particles occurs, ' which leads
to long-time behavior different from the classical kinetic
scheme. A recent review article summarizes the
findings. " In contrast to the A+2 A, A+A 0, and
A+8 8 diffusion-limited reactions, for which in the
last years several exact 1D solutions have become avail-
able, the analytic work for 2+8 0 reactions is still
based (even in 1D) on approximate (although increas-
ingly reliable) analytical methods. '

Most of the analyses have centered on diffusion
limited reactions in which the reactants move (either
diffusionally or as a random walk) before reacting on
contact. By contrast, far less attention has been paid to
reactions in which the particles annihilate via longer-
ranged interactions, such as exchange, in the absence of
motion. Since motion and reaction often cause adverse
effects on segregation, ' ' we consider here only reac-
tions with immobile reactants. Such reactions, especially
when taking place in spaces of low dimensions, provide a
stringent test of approximate analytical approaches,
since possible deviations of the theory from the computer
experiments are not obscured by diffusion effects or by
the (often milder) behavior in higher dimensions.

Interestingly, we find expressions which use the Kirk-
wood superposition approximation" for the three-center
correlation functions to perform exceedingly well even
for short-range exchange reactions in 1D, and to provide
both the correct long-time asymptotic behavior of the re-
action, as well as the correct A8-particle segregation
pattern. This fact is quite remarkable, since then the
method may represent a powerful analytical approach to
the 4+8 0 problem, even when diffusion is involved.
By contrast, neglect of the segregation aspect leads to
(even qualitatively) wrong asymptotic forms.

In the following we consider randomly distributed A
and 8 particles, which react via exchange, w(r) =w(r)
=woexp( —r/ro), where w is the probability rate that A
and 8 situated at distance r react and ro is a constant,
which determines the interaction range. The exponential
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The p are ensemble-averaged products of reactant
concentrations, where m and m' denote the number of A
and 8 particles involved in the product. With n(r, t) be-
ing the microscopic particle density, one has thus for the
single- and two-point densities,
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and

p2, o =(n~(r~, t)n~(r2, t)&=n~(t)A—'~ (r~ —r2, t),
po 2 =(ntt (r~, t)ntt(rq, t)&=—ntt(t)Xtt(r~ —rq, t),
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Note that in Eq. (3) we have introduced the pair correla-
tion functions X~(r, t), A'tt(r, t), and Y(r, t). In this
Letter we consider strictly bimolecular reactions, so that
one has for the number of particles A(0) =8(0), and
thus also A(t) =8(t) at all times. This implies n~(t)
=ntt (t)—:n (t) and 2'~ (r, t ) =Att (r, t ) =A(r, t ). —

We revert now to one dimension. Inserting Eqs. (2)
and (3) into Eq. (1) leads to the following exact expres-
sion for n(t):

dn(t) n2(t) w(r'—)Y(r', t)dr'.
dt 4 —oo

(4)

form is typical for exchange-dominated reactions in
solids, like scavenging or recombination of electrons and
holes via tunneling. For describing the recombination
kinetics we follow the ideas of Kuzovkov and Kotomin,
where the following infinite system of coupled dif-
ferential equations for the many-point densities p ~ de-
rived (p. 1485ff of Ref. 4):

m m'

pm, m'= Z X ~(ri rj)pm, m'
t=1 j=1
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Following Refs. 4 and 12 we now make use of the Kirkwood superposition principle to decouple all three-center correla-

tion functions (see Eq. 7.4.6 of Ref. 11); thus, for instance,

pq ~
=(n~(r~, t)n~(r2, t)ne(rI, t))=n (t)X(r~ r—q, t)Y(r~ —ri, t) Y(r2 —rt, t).

This approximation leads here to a closed set of equations for X and Y:

Bin Y(r, t) = —w(r) —2n(t) w(r') Y(r', t) [X(r —r', t) —1]dr',J —oo

81nX(r, r) = —2n(t) w(r') Y(r', t) [Y(r —r', t) —1]dr'.
f+ oo

4 —oo

(6)

A simple way to visualize, say, Eq. (6), is to observe that
a given AB pair may disappear [d(n Y)/dt] either
through direct annihilation ( —wn Y) or by having one
of the partners annihilate with a third particle, whose po-
sition distribution is given in the Kirkwood approxima-
tion by a n YYX-type product. The factor 2 accounts
for the two channels for third-particle annihilation and
the —1 in the square brackets stems from the dn/dt
terms in the d(n Y)/dt expression, where use was made
of Eq. (4).

The starting point both for the simulation and also for
the analytical development according to Eqs. (4), (6),
and (7) is an uncorrelated distribution of A and 8 parti-
cles with initial densities n(0) =no and Y(r, O)
=X(r,O) =1. Evidently in the course of the reaction one
has at all times

lim X(r, t) = lim Y(r, t) =1.
lpl ~ lp.

l

(8)

Y(r, t) =exp[ —w (r) t], (9)

with which Eq. (4) can be integrated by separation of
variables, yielding

A lower-level approximation than Eqs. (6) and (7) con-
sists in decoupling at an earlier stage, e.g. , by setting
X(r, t) —= 1 in Eq. (6). This implies the neglect of corre-
lations between like particles, i.e., neglect of cluster for-
mation. Such a procedure, although sometimes encoun-
tered, "does not display the proper asymptotic behavior.
The approximation implies, from Eq. (6), that

tion of unlike particles was simulated through a minimal
process method. ' From all AB pairs at each reaction
step one pair was selected randomly, according to its re-
action rate; the time increment ~ for this step was com-
puted as r= —(lnT)/R, with R being the sum of the
rates of all AB pairs present and T a random number
from the homogeneous distribution in the unit interval.
The time was measured in units of wo

' and we stopped
the procedure after a maximal time of 10

Figure 1 shows the buildup of correlations after start-
ing with 1000 A and 1000 B particles on a segment
L =10000. The interaction parameter ro was set to
ro=5, which corresponds to typical exchange interac-
tions in organic molecular crystals. Already at t =10
correlation regions are clearly visible, a finding compara-
ble for instance to the results for diffusion-limited reac-
tions under pulsed excitation, ' ' and also for steady-
state situations.

To quantify these findings we present in Fig. 2 the evo-
lution of the number of A (or 8) particles, followed over
more than thirty decades in time. The decay (curve a)
was obtained by averaging over ten different initial
configurations, and we indicate the standard variation of
the data by dashed lines. Asymptotically, the simula-
tions follow very closely a ln 'i (wot) behavior, as
verified by us by replotting the data of Fig. 2.

[n(t)] ' =no '+ dr(1 —e " ' ') —Cln(wot), (10)

the last integral being of common occurrence in the
theory of energy transfer. ' However, we find (vide in
fra) that both simulation calculations and the full system
of Eqs. (4), (6), and (7) lead to

n(t) —Cln ' '(wpr), (11)
in accordance with a change of —,

' in the time-decay ex-

ponents for strictly bimolecular reactions; see Refs. 1-4.
In higher dimensions the exponent in Eq. (11) is —d/2.

The starting point for the simulations are random dis-

tributions of A and 8 particles (Wo each) on a chain of L
sites under periodic boundary conditions. Here and in

the following a shift-register random-number generator '

(p =98, q =27) was used. The random mutual annihila-
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FIG. 1. Distribution of A and 8 particles (initially 1000 of
each kind on a chain with L =10000 sites) during a numerical

simulation. Each vertical line represents one A (up) or B
(down) particle.
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A very good description of this decay is provided by
4 (6), and (7). Here the numerical evaluation

and s ace vari-involved the discretization of the time an p
ables, and use was made of the sym ys mmetr of the integrals

im rove the accuracy, forwith respect to inversion. To imp f
h discretized time interval the derivatives were ex-each iscretize im

d symmetric functions of the iinterval's boun-presse as sy
aries. This leads to a nonlinear set of iteratation func-

tions, which converge very fast under a qa uasilineariza-
dure 'tion procedure.
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ly stringent, so that one may use with confidence the
analytical method in applications to experiments.
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