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Gravitational Anomalies from the Action for Self-Dual Antisymmetric
Tensor Fields in 4k +2 Dimensions
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We show that recent actions for a single self-dual antisymmetric tensor field in 4k+2 dimensions lead
to the same one-loop gravitational anomalies as obtained a few years ago by Alvarez-Gaume and Witten,
who conjectured the necessary Feynman rules in the absence of an action principle.
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metrization with unit strength. ) One may check that
indeed **F=Fin d =4k+2. The one-graviton vertices
for the non-self-dual case are obtained from the action
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Self-dual, or anti-self-dual, antisymmetric tensor fields
appear in ten-dimensional supergravity models, which
themselves are the low-energy limit of string theories. In
order that these supergravity theories be consistent quan-
tum field theories, their gravitational anomalies (viola-
tions of the conservation of the energy-momentum ten-
sor) must cancel. In particular, loops of a self-dual an-
tisymmetric tensor, coupled to external gravitons, con-
tain an anomaly which must cancel the anomalies due to
loops with chiral spin 2 and/or chiral spin —,'. The ac-
tions for chiral-spin- —,

' and - —', fields coupled to gravity
are well known from supergravity theories and their
anomalies have been computed straightforwardly, but for
self-dual antisymmetric tensor fields recent developments
concerning the construction of actions have occurred.
This has enabled us to complete the proof that the gravi-
tational anomalies cancel. Of course, the proof that they
do cancel (except for the step in the proof given below)
is due to work by Alvarez-Gaume, Witten, Green, and
Schwarz and led to the resurgence of string theories.

In (d =4k +2:—2n) -dimensional Minkowski space-
time, one can impose a self-duality (or anti-self-duality)
condition on a real rank-n antisymmetric tensor field

( g) (n ) e p y . p F

man rules which they used to compute the one-loop grav-
itational anomalies. The one-graviton vertices were ob-
tained by replacing T"'(F) by T""(—,

' (F+ *F)) and
read

X;„t=—,
' h„„[(F",F")+(~F",F")]——,

'
h (F,F) .

The propagator for two non-self-dual F tensors is easily
obtained from the propagator of the A fields and reads

(Fp @ (q)F" ""( —
q )) = n n(q 'q .~„,Is„,

'
„"„I)

q

From Eqs. (3)-(5) one can construct one-loop Feynman
diagrams with n+1 external gravitons. If one uses at
one vertex (4), while at the other n vertices one uses (3),
and replaces at this one vertex the polarization tensor of
the graviton t.„,by ik„e,+ik,e„, one obtains the leading
part of the covariant anomaly. [Using (4) at all vertices
would yield the leading part of the consistent anomaly
which is a factor (n+1) ' smaller. ]

Recently, actions for self-dual antisymmetric tensor
fields have been constructed. One class of actions is

manifestly Lorentz invariant, but contains a Lagrange
multiplier field and needs at the quantum level many
extra fields. Another class of actions contains only
one field A;, . . .;, (the indices ik will always be space-
like), both at the classical and quantum level, but these
actions are not manifestly Lorentz invariant. They are,
however, Lorentz invariant in the sense that one can ex-
hibit symmetry transformations on the fields which satis-

fy the Lorentz algebra in Bat spacetime. ' Since these
actions do not require Lagrange multipliers one suspects
that their Feynman rules are closely related to those con-
jectured by Alvarez-Gaume and Witten (AGW). In this
Letter we will compute the gravitational anomalies in

these theories. Although our Feynman rules diff'er from
those of Alvarez-Gaume and Witten, our results for the
anomalies coincide with theirs.

In d=2 Aat spacetime the action for a chiral boson is

given by

In the absence of an action for self-dual fields,
Alvarez-Gaume and Witten conjectured a set of Feyn- The coupling to gravity was first given in Ref. 6. In Ref.
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7 we derived a general algorithm to construct the cou-
pling of d=2 chiral bosons to any system. Using this al-
gorithm we obtained the coupling to supergravity as well
as d =2 nonlinear o models with chiral bosons.

For our purposes we will need the coupling A;, . . . ;
to gravity. We begin by constructing the coupling of the
field A;, . . . ;, in d =4k+2 =2n to gravity, extending
the algorithm of Ref. 7 to higher dimensions, thus
rederiving the result of Ref. 6. Decomposing F„, . . . „n
into a pure space part F;, . . . ;—:f;, . . . ; and a timelike

fields in d =4k+ 2 can now be obtained by extending the
procedure of Ref. 7. First, one writes the action

jg, ((F,P) ——,
' (P,P)

(ip)

where P;, . . .;, and k;, . . . ;„, are auxiliary fields with
only spacelike indices. Eliminating these auxiliary fields
by using their equation of motion, one is left with the ac-
tion which describes, assuming a suitable falloff of the
fields at spacelike infinity, a self-dual tensor:

e;"=8;",
e„' inverse of e, " with a F (J,i),

a b-
gp ep ey grab

gJ J 1& glJ glJ

(7)

Since (~,f, ~,f) (f,f), this action is of the form
E, g+g2 6

Note that the field Ap;, . . .;, drops out from (11).
Using this action we now proceed to extract the relevant
Feynman rules. The one-graviton coupling is given by

—,
' g„,T""=hp;(f', *,f)+h;J(f',fj) ——,

' h" (f f)
(i2)

the nonchiral action can be written as

X = —,
' N Jg, HF, F ) —(f f)),

where g, detg;J. The self-duality condition reads F~= —~,fwhere *, is the space-dual operation, defined by

(/2

pt

One may check that ~, ~,f=f. The action for self-dual

which depends only on the gauge-invariant field f. The
propagator of the f field, denoted by double angular
brackets, is obtained from the flat-space action for

after gauge fixing by adding Xsf = (A, d*,d*,A), where
d is the exterior derivative acting only on the space coor-
dinates. The A-field equation from the gauge-fixed ac-
tion reads

m

q ~l, l", +.
jn —1 j1

&ml',
Jn —i'''Jl g (q) P (i4)

and the A propagator becomes

The f propagator then reads

m
qop J

~ml
1 ln-1

(n 1)!q'—
(qp) 2

—(n —1), , q 'q(;, 6';, . . . ;",!
q

(is)

«f, ,
. . . , (q)f" '''"( —q))) = ' "

", q"'q(;, 6;',' )—,. '.

q. '"q(;,e;,

Using the identity

2

n
(i7)

we obtain the final form of the f propagator:

«f;, . . . ;„(q)f" '"(—q))) = ' "'," q"'q(;, 8,", . . . „"( — q(;, e;, . . . ;„('"

The strategy we will follow to compute the anomaly originating from (12) and (18) will be to reduce the computation
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to the one of Ref. 1, thus showing that the anomaly is the same. To this aim we first notice an algebraic relation be-
tween the propagators (18) and (5):

&(f;, . ;„(q)f ' "(—q)» = —,
' (F;, . . . ; (q)(F —»,Fo)~' "(—q)&

= —((F—*,Fo);, ;„(q)(F—*,Fo)" '"(—q)&

+ -' ((F+ *,Fo);, . ;„(q)(F —*,Fe)" '"(—q) & (19)

((~,Fo);, . . . ;—:[(n —1).] 'e;, . . . ; „.. . ~,FO
" ' '). The second term in this last identity corresponds to an inser-

tion of the (free) equation of motion and in fact gives a nonminimal term without poles:

((F++,Fo)'~' ' (q)(F —+,Fo)" '"(—q)&= in!—b~,", . . „"1. . (20)

Now we turn our attention to the properties of the vertices considering first the AGW formalism. The Feynman rule
for the vertex used by Alvarez-Gaume and Witten is obtained from (4),

VN [y, v2 vol 1 v„''' vl 1 & [yl y2 y„]

2jn —1)t 41 P2 P~l ~ bl~ P2 P l2n! 2nt
aa 6 p pi (21)

where we have chosen to work with a simplified polariza-
tion It„,=a„a„(a =0), and satisfies by construction the
property of self-duality:

R= —+R= —R+. (22)

in 4 l 1
' l~ (24)

Taking into account relation (19) one can thus conclude
that the relation between the (formal) expression of a
general one-loop graph G computed in the theory de-
scribed by (11) and G' computed in the AGW formalism
1S

G =G'+8, (2S)

In a general one-loop graph one can split the contraction
of a vertex with a propagator into two sums: one part
with purely spacelike indices and another part in which
the index 0 appears once; in this second sum one can
then use the property (17) replacing R by —+R (or
—R*) and absorb the * in the propagator. This manip-
ulation shows that a general one-loop graph in the AGW
approach can be equivalently constructed by making use
of the vertices (16) with only spacelike indices, joined by
the propagator

((F—+,Fo);, . . . ; (q) (F—«,Fo) ' "( —
q ) & . (23)

Now turning our attention to the theory described by
the action (11) one can check that (12) gives the vertex
Feynman rule

L

where 8 are terms where one or more propagators (23)
are replaced by (20). Since the propagators in (20) are
independent of momenta, they are nonminimal terms
which cannot contribute to the anomaly. [A similar ob-
servation was made in Ref. 1 for the propagator of bi-
spinors, Eq. (48).] Hence the anomalies obtained from
the action in (ll) are the same as obtained in Ref. 1

from conjectured Feynman rules. In Ref. 1 it was ex-
plained that bosonic theories with an action principle do
not contain gravitational anomalies as long as these ac-
tions are manifestly Lorentz invariant in flat spacetime.
Our actions are not manifestly Lorentz invariant and this
explains why they can have, and indeed do have, gravita-
tional anomalies.
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