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Conformal Invariance and the Heisenberg Model with Arbitrary Spin
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The eigenspectrum of the critical anisotropic Heisenberg model (or XXZ model), with arbitrary spin
S in its disordered-ferroelectric regime (0 ~ y ~ rr/2S), is solved by the Bethe-Ansatz method. The am-
plitudes of the leading finite-size corrections are calculated analytically and numerically. Using confor-
mal invariance we give exact results for the conformal anomaly and scaling dimensions. Our results in-
dicate that, for all spins S, the critical behavior is governed by a conformal field theory with central
charge c =1.
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The assumption that most of the statistical-mechanics
systems, at criticality, are conformally invariant has
proved to be extremely fruitful in two dimensions. ' The
possible universality classes of critical behavior are la-
beled by a dimensionless number c, which is the central
charge of the associated conformal (Virasoro) algebra.
In the case where c & 1 unitarity restricts c to the
countable set c =1 —6/m(m+1), m =3,4, . . . . In these
theories, which include the Ising (c = —,

' ) and the three-
state Potts model (c = —', ), the operator algebra is finite
and the anomalous dimensions are given by the Kac for-
mula. In the limiting case c =1 the algebra is not finite
anymore, and in this class we have models with continu-
ously varying exponents like the Ashkin-Teller model
and the spin S- 2 anisotropic Heisenberg model, or
XXZ chain, with the Hamiltonian

H~~2 —g'(rrjog+~+o~~o J+~+ cos(y)crfcr~+~] . (1)
J

Here e +'1 and a",a, a' are spin- 2 Pauli matrices.
This model, in the bulk limit, is gapless for 0~ y~ z
(disordered phase) with the critical exponent varying
continuously with y. The operators obey a larger alge-
bra than the Virasoro one, namely, a U(1) Kac-Moody
algebra with central charge k =2S =1. For a=+1,
the point y=0 corresponds to a continuous roughening
transition to an ordered-antiferroelectric state, while for

—1 the point y=O corresponds to a transition to a
completely ordered ferroelectric state.

The generalizations of the Heisenberg model to arbi-
trary spin S are related to (2S+1)-color-vertex models
(S —,', 1, . . . ), which are soluble by the Bethe An-
satz. ' '' For S =1 they correspond to a nineteen-vertex
model with the associated Hamiltonian'

L

H( —g {o —(a. ) —2(cosy —1)(a o'+o'a )
m 1

—2sin y[a' —(a' ) +2(S' ) —2]j, (2)

where om Sm ' Sm+] o'm + o'm and arm SmSm+1 ~

Here e ~ I and S', S, and S' are (3X3) matrices of

spin 1. For general spin S, the Hamiltonian is given by a
polynomial of degree 2S in the variables a, o', and S'
where now S, S~, and S' are spin-S matrices. These
Hamiltonians can be block diagonalized into disjoint sec-
tors labeled by n = PmSm, and in a given sector n the en-
ergies, for an L-site chain, with periodic boundaries, are
given by

sin(2Sy) g" sin(2Sy)F X,).3 =f
2S ~=& cos(2Sy) —cosh(2') '

where b ~;j= 1,2, . . . ,LS nj are obtain—ed by solving
the Bethe-Ansatz equations: ' "

' L
sinh(XJ iSy) — " sinh(X~ kk —i y—)
sinh(kj+iSy) ~~k =~ sinh(AJ kk+fy)— (4)

These spin-S Hamiltonians are massless" and disor-
dered for 0 ~ y ~ z. As in the S=

2 case, at the isotro-
pic limit y=0, the model with a=+I (e= —1) under-
goes a continuous (discontinuous) phase transition to an
antiferroelectric (ferroelectric) ordered state. It was
shown recently' ' that in the disordered-antiferroelec-
tric regime where @ =+1 and 0~ y~ rr/2S the critical
exponents vary continuously with y and the operators
satisfy a U(1) Kac-Moody algebra with central charge
k =2S and conformal anomaly c =3S/(1+S), for all

y. ' In this regime the zeros of (4) corresponding to the
lowest-energy state are formed by excitations above a sea
of strings of size 2S. ' "'

In this Letter we study the above models in their dis-
ordered-ferroelectric regime e= —I and 0~ y~ rr/ 2S
and, as we shall see, a very different behavior occurs.
Solving (4) numerically we verify that, contrary to the
a= 1 case, in this regime the roots fk~j corresponding to
the ground state are formed by a sea of antiparticles'
b Jj = hj~+irr/2j, j=1,2, . . . ,Ls —n, where X~. are real
numbers. The lowest energies correspond to excitations
above this sea. Using this fact the density of zeros of (4)

708 1989 The American Physical Society



VOLUME 63, NUMBER 7 PHYSICAL REVIEW LETTERS 14 AUGUST 1989

in the bulk limit is given by'
1

1 cos[yns/(rr —y)]cosh[A, rr/(n —y)]
rr —

y &z
i

i cos[2yrrs/(x —y)]+cosh[2kx/(rr —y)]
2

and the ground-state energy per particle, in this limit, is'

(s)

(6)

um, which we calculated analytically, ' we obtain
h (9) the exact scaling dimensions and spins of

several primary operators, together with their conformal
towers.

Let us discuss initially the case of I even and a period-
ic boundary condition. The distribution of the zeros of
(4) corresponding to the lowest-energy state in the sector
n is formed by a sea of LS —n antiparticles. ' These
states are related, through (9) to the spinless operators
O„,o with dimension x„o=n x~, where x~ =y/2x. The
operators Oi 0 and 020 correspond to the polarization
and energy operators in the eight-vertex model (S
= —,

' ). The distribution of roots of the Bethe-Ansatz
equations (4) for the excited states, on sector n, are
forined by excitations of real and stringlike particles (or
both) in a sea of antiparticles and they are related with
the operators O„with dimensions

(7)gs =csin(2Sy)/2(z —y), 0~ y~ z/2S.

The conformal anomaly c can be estimated' from the
large-L behavior of the ground-state energy Eo(y, L) of
the L-site Hamiltonian,

Eo(y, L)/L =e —rrgsc/6L +o(I. ).
In the regime we are studying, the Bethe-Ansatz equa-
tions can be transformed in a set of real equations and
the eigenenergies can be calculated analytically using
standard methods. ' Our results, using (6)-(8) give us
c=l for arbitrary y and spin S. We also have solved
(4), for finite L, for several values of y and S and in

Table I we show some of the estimates for the conformal
anomaly, together with their exact results. It is impor-
tant to notice here that although the signal of t. in the
spin-S Hamiltonians does not change their explicit sym-
metries, the universality classes change remarkably. '

The conformal invariance of the critical system also
gives us a powerful way to calculate the scaling dimen-
sions of operators, governing the criticality, from the
eigenspectrum of the finite-chain Hamiltonian. For
each operator, with scaling dimension x and spin s, there
exists a tower of states in the finite-size-L Hamiltonian.
In the case of a periodic boundary condition, the energy
and momentum of these states are given by

x„~ n x~+m /4x~, n, m =0~1,+ 2, . . . , (10)

and spin s„nm. It is interesting to remark here that
the dimensions x„do not depend on the spin S of the
model. The above operators O„are the analogs of the
Gaussian-model operators ' composed of a spin-wave ex-
citation of index n and vorticity m, in perfect agreement
with known results for the spin S=

2 model. We also
calculate dimensions of primary operators which are con-
stant in the whole range 0( y~ n/2S These a. re, for
example, a spin-1 operator with dimension X=1 and a
spinless marginal operator (dimension x,„=2). This
last operator governs the motion along the critical line '

and corresponds in the S= —,
' case to the four-spin cou-

pling of the eight-vertex model. To illustrate these re-
sults we show in Table II the finite-size estimates for the

E =Eo (L ) +2 (s ( +M+ M)/L + o (I ),

P~ ~ =2m(s+M M)/L; M, M =0, 1—, 2, . . . ,

(9)

respectively. From the large-L dependence of the eigen-

sin(2Sy) "+ sin h'(Syx)
4S " — sinh(yX/2) cosh[X(n —y)/2]sinh(Xx/2)

We also calculated their dispersion relation, whose low-
momentum behavior permitted us to extract the sound spectr
velocity, throug

TABLE I. Finite-lattice estimates for the conformal anomaly of the spin-S model: ct(y)
= le —Eg(y, L)/L]6L /mals.

8
28
48
68
88

100
Exact

cL (~/3)

0.992 190
0.999423
0.999 804
0.999902
0.999941
0.999954
1.0

cP'(zr/4)

0.999 197
0.999928
0.999975
0.999988
0.999993
0.999994
1.0

cg (rr/5 )

1.000 387
1.000031
1.000010
1.000005
1.000003
1.000002
1.0

cP'(x/6)

1.000953
1.000077
1.000026
1.000013
1.000008
1.000006
1.0

cg(x/7)

1.001 284
1.000 104
1.000 035
1.000018
1.000 010
1.000008
1.0
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TABLE II. Finite-lattice estimates of the scaling dimensions of the spin-S model: x, , (y)
n x~+m'/4x~, x~ = y/2x. x,„corresponds to the marginal operator.

8
28
48
68
88

100
Exact

xJ. ( (a/3)

1.570838
1.505 985
1.502 040
1.501 017
1.500607
1.500470
1.5

x ' „(x/3)

1.967 905
1.997448
1.999 133
1.999568
1.999742
1.999800
2.0

x$,tj'(x/4)

2.074452
2.005 670
2.001 922
2.000956
2.000442
2.000442
2.0

»', 0(x/5)

0.099 712
0.099976
0.099992
0.099996
0.099998
0.099998
0.1

x$tg (a/6)

0.333 508
0.333 348
0.333 338
0.333 336
0.333 335
0.333 334
0.3

scaling dimensions of several operators for some values
of y and spin S. All these results indicate that the criti-
cal behavior of the disordered-ferroelectric regime of the
spin-S Heisenberg model is described in terms of Gauss-
ian fields p~P~- with dimension x„6++4 and

spin s„~ 4+ —6, where d — (n jx„~ 2 m Jxz) /
2. These Gaussian fields satisfy a U(1) Kac-Moody
algebra ' with central charge k 1, for all spin-S mod-
els, contrary to the critical behavior of the disordered-
ferroelectric regime, where the central charge is
k 2S. ' We have also calculated the large-L correc-
tions to (8) and (9); for example, the leading corrections
to (9) for the dimensions x„o are of the form
L (aoL "/"+a~L ). All the corrections we cal-
culated can be accounted for by using perturbation
theory and the fact that the Hamiltonian deviates from
that of the continuum theory by irrelevant operators. As
in the S & case these corrections can be explained as
arising from the irrelevant operator, with dimension
x -4, of the conformal block of the identity operator and
the primary operator 02 o with dimension xo 2 2'/y.

In the case where the lattice size L is an odd number
the sectors are labeled by n =0, + 1, ~2, . . . if S is an
integer and n=+ —,', + 2, . . . if S is a half integer.
The scaling dimensions obtained by using in (4) the
ground state of the (L+1)-size system are also given by

&n, m.
For the spin-2 system, it was shown that all the

minimal models (c & 1) can be obtained by one's chang-
ing continuously the boundary condition compatible with
the U(1) symmetry. This fact motivated us to analyze
our spin-S system with the toroidal boundary condition
specified by the angle p (0 ~ p ~ 2z):

SL+)+'iSL+) =e —' (Sf ~iS)), SL~) =S). (11)

The Bethe-Ansatz equations (4), for periodic boundary
conditions, can be generalized to include these cases. '

%'e obtain, by solving these equations analytically and
numerically, the finite-size corrections of the eigenspec-
trum which would correspond to a periodic critical
model with conformal anomaly cP =1 —3(tt/x) /2y and
the scaling dimension x„~&/2 given in (10), for all
spins S. Choosing properly the angle p, we can obtain

the conformal anomaly and operators corresponding to
the minimal series (c & 1).
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