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We propose definite experiments to provide realizations of a number of important models in the field
of quantum chaos. These models share the feature that they are driven impulsively in time, i.e., kicked.
In quantum language, a kick drives the system from one energy level to a neighboring one. The most
fundamental question is whether localization occurs, i.e., whether eventually the system is driven far
from its initial level or not. The most straightforward realizations are in optical fibers where the
language of modes and propagation constants replaces quantum terminology.

PACS numbers: 05.45.+b, 42.81.—i, 71.55.Jv

Quantum chaos"? is the study of systems described by
wave equations under the following conditions: (1) The
system is Hamiltonian, i.e., little or no dissipation and
noise; (2) low dimension; (3) low symmetry; and (4)
wavelength rather short. There are many interesting sys-
tems of scientific and even engineering importance whose
theory falls under this definition. An example is the
highly excited vibrational and rotational states of small
molecules, described by Schrddinger’s equation. Anoth-
er is the propagation of plasma waves in devices such as
a tokamak, described by magnetohydrodynamic equa-
tions. The closely related case of randomness and disor-
der is usually considered separately.

However, the current level of sophistication is so low
that most theories are restricted to cases of phase space
dimension 3 or 4. Unfortunately, very few realizable ex-
amples of conserving systems with such low effective
dimensionality are known. (For example, orbits in the
three-body problem lie on a phase-space manifold of di-
mension 8.) Essentially the single, and very beautiful,
experimental example is Rydberg hydrogen driven by a
strong microwave field,** whose phase-space dimension
seems to be 3. Another type of experiment measures just
the spectrum and not the dynamics. Hydrogen in a mag-
netic field is most fruitful is this case.’

In fact, however, most theoretical work is on still more
specialized cases®® in which the system propagates in
free space except for kicks or reflections at sharp time or
space coordinates. Numerical (and analytic) results are
much easier to obtain in these cases, and the results are
believed to be qualitatively generic.*® It is the purpose
of this note to suggest experimental realizations of these
theoretically most tractable cases, something which up to
now has not been achieved in practice and for which
there are very few concrete proposals.

Because the wavelength is short, the eikonal approxi-
mation is suggested. This approximation reduces the
difficult partial differential equations to much more
tractable ordinary, but generally nonlinear, differential
equations, ODE’s; e.g., Newton’s equations replace the

Schrodinger equation. Because of nonlinearity and low
symmetry these ODE’s exhibit chaotic solutions, if the
dimension of phase space is 3 or greater. It remains a
major problem to find and classify the spectrum, eigen-
states, and other wave properties of such systems, even
with the help of the numerical solutions of the ODE’s.

For the most part we restrict our proposals to the fol-
lowing system: Propagation of light in optical fibers or
thin plates.'®!! There have been tremendous technologi-
cal advances in this field in the last couple of decades
which make very sophisticated experiments possible.
Light can propagate many meters in practical fibers
without change of mode or loss of amplitude. We here
show that very interesting experiments are feasible.

We confine attention to the widely used and practical
case of weak guidance. The main advantage of weak
guidance is that polarization effects are small; i.e., the
vector Maxwell’s equations may be replaced by the sca-
lar wave equation. This is essentially because the paraxi-
al approximation is also good; the light propagates al-
most parallel to the fiber axis. Weak guidance means
that A= (n2, —n3)/2nk is small (typically 10 ~2). Here
n is the index of refraction, assumed real, and the sub-
scripts refer to the core and cladding. To be concrete,
one may keep in mind a circular core of radius p or a
slab with core thickness 2p, and a step profile in the
dielectric constant. The cladding is assumed to be
infinitely thick, a good approximation. However, graded
profiles are also very interesting. We adhere to the nota-
tion of Snyder and Love. '°

We want a many-mode fiber (transverse wave-
length<p), thus with large “fiber parameter”
V =kpnc,(24) /2, where k =2r/\» =w/c is the free-space
wave number. The number of bound modes is 4V/x for
the planar case, and ¥'%/2 for the circular case, counting
the two polarizations. Under these conditions, geometri-
cal optics (the eikonal approximation) is usually ade-
quate.'® In that language, bound modes impinge on the
core-cladding boundary at a glancing angle ¢ giving total
internal reflection [¢ < 9. =(2A)V2].
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The equation, V2+n2k2=0, satisfied by a function ¥
(say the electric field) is rewritten

2
— = =V2 4+ U+ U (r,2) | =5 x2¥. (1)

We have set the refractive-index profile as n%(r,z)
=nd(r)+nt(r,z), where n(r) depends only on the
transverse direction(s) r, and the “perturbative” part, n?,
depends on both z and r. Then %Uo=} [x?>—k?nd] and
€U =— +kn?. Here V, is the gradient transverse to
the fiber, and x=kny is the wave number in the clad-
ding. A time dependence exp(—iwt) is assumed. The
strength parameter ¢ is separated out for convenience.
We have departed from Ref. 10 to make Eq. (1) look
like the (mass 1) Schrédinger equation.

Neglecting %, and putting ¥ =e"”’¢,(r), where B, is
the propagation constant for the /th mode, gives an ei-
genvalue equation for ¢,

— V24 Uy(r))e, = Fori =Ee; ()

where E; =1 («?—B)=x(x—p;) and U, =pl2k?n?
+2E;1'2 is the core parameter, or dimensionless trans-
verse wave number. Bound modes have negative “ener-
gy’ Ej,orU <V. ,

We now consider the perturbation ¢%/;. We take it to
be periodically bumped; i.e., %, vanishes except within a
short distance ¢ of z=jZ, where j is an integer. [It is
also interesting to space the pulses randomly or quasi-
periodically, etc.] Letting ¥ =e*¢(r,z), an approxi-
mating —8%/8z 2= x? —2ixd/8z we have the equation,

i3 < [#o+ e (2o, ©)
i.e., the periodically pulsed “time dependent” Schro-
dinger equation. Neglect of the second z derivative of ¢
is tantamount to the neglect of reflection from the bumps
in the dielectric constant. [The matrix element for such
a reflection is fdze* % ,(r,z). Suppose the z depen-
dence of U, to be smooth, say U;=x>V(r)W(z/E),
where for example W (s) = exp(—s2)/v/x or 1/(xcoshs).
If k&> 1 we can neglect reflection.]

We next consider the condition under which the bump
effectively acts like a d-function kick. The formal solu-
tion for the “time” evolution operator U(z,z') [e(z)
=U(z,2")¢(z')] is given by

U(z,z')= !exp[—%fz,zdzle?zl(zl)” , 4)

+

where the “+” indicates the earliest “times” are ordered
to the right. Here U; =exp(i#oz/x)U exp(—iFoz/x).
A typical term in the expansion of U is

N
[ﬁJ L,dzlﬁ, lez e L,N—lde?.ll(zl) te ‘Z?N(ZN).

Taking a matrix element between ¢, and ¢; and assum-

ing a smooth z dependence gives a sum of terms with
factors V j,, expl — iz (E; — E,,)/x1W(z/{), where V jp, is
the matrix element of YV between transverse modes. If
the energy dependence expl—iz(E;—E,)/x] can be
neglected, then the time ordering can be ignored, and the
traversal of the kick is given by (4) with no “+,” which
is just the formula for the propagation through a §-
function kick. The condition is thus ((E;—E,)/x
={(B» —B;) K1 for the largest B, —B; with m,j con-
nected by appreciable matrix elements. Assuming the
matrix elements connect only nearby modes, j=m * 1,
the largest difference for a step-profile planar structure
or fiber will be near cutoff, i.e., for j as large as possible.
The step-profile fiber has, crudely, E;=2j2/8p%*— k?A.
The condition is then z£(2A) /%/2p <« 1, which is satisfied
for {==p. Bliimel, Fishman, and Smilansky® have dis-
cussed the case in which this condition is not strongly
satisfied and they find that the many results are insensi-
tive to it. At the opposite extreme, for {(B,, —B;)>1,
for the smallest modal differences, we would have no
transitions between modes, and the adiabatic approxima-
tion would be good.

This result gives for the evolution operator from just
before one kick to just before the next (a quantum
map?),

U=-expl—i#oZ/clexpl —iex¢V]. (5)

For a step profile, #0Z/x can be “quantized,” approxi-
mately as (227%j%/8 —Z?A/p?)/h where the dimension-
less “Planck’s constant” A =2Z/p*x=AZ/2np*ny. The
second exponential can be written expl —iKY/h], where
K is the “classical” kicking strength given by
K=¢€lZ/p?. This is a “two parameter” system much
studied by quantum chaos theorists,®"® where K is “clas-
sical,” independent of A, parametrizing chaos, and A
parametrizes finite-wavelength effects.'? (Z2A/p? is a
second “classical” parameter characterizing the depth of
the potential, but other dimensionless numbers, e.g, A,
Z/p, and ¢/Z do not appear independently in the prob-
lem.) The greatest interest attaches to the cases where
both K and h are of order unity. A typical operating
condition would be A=20.5-1.5 um, p=100A, {=p, and
Z=10%p. Under these circumstances K can be made of
order 1 if e==1073.

The question then is how one can change the dielectric
constant locally in this fashion. One possibility is to
build it in during the drawing of the fiber by varying the
composition. This has the disadvantage that K cannot
then be readily varied during the course of an experi-
ment. (In the planar case, one could vary the angle of
propagation so that Z and ¢ would effectively be varied
together. This is likely to be impractical for planar opti-
cal systems but is suitable for channeling systems to be
mentioned.) There are many possibilities. Among them
we have considered inducing local strains by the pressure
of a knife edge, inducing local changes in carrier concen-
tration by attaching a gate, exploiting nonlinear optics
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effects, and using piezoelectric materials which can be
manipulated by an electric field.

The most convenient way we have found so far is to in-
duce the bumps by local heating either electrically or by
blackening the surface at the bump and heating it with
radiation. In these cases the profile in the z direction
will be smooth and {=p. If a steady-state temperature
gradient is maintained across a bump in the planar case,
then [ U, dz « x. This “dipole” coupling is often studied
in modeling “atoms” driven by a “microwave” field.
This is the only nontrivial steady-state possibility, since
the integral of the local temperature [7 dz satisfies the
one-dimensional Laplacian. It should be easy to use
transient heating, however, in view of the difference in
time scale between optics and heat diffusion. Then
JTdz will go approximately as x? in the simplest case,
ie, e=+p*T"dInn?/dT, V =x?/p% This is another
case which is much studied. Since dn/dT= —0.6
x 10 73/°C (for fused silica), one must achieve a tran-
sient temperature difference between the axis and bound-
ary of the fiber of order 50°C.

For the circular fiber, in the case in which the bumps
are formed by transient heating in an axially symmetric
manner, the perturbation will be approximately r2. This
perturbation does not change the angular dependence of
the light. Thus the HE,,(/ =0) modes for example are
not mixed with the other modes. Again, a kicked one-
dimensional system results, which is classically identical
to the planar system kicked by an x 2 potential. We shall
see that the subspace of /#0 modes essentially differs
from that of /=0. Heating with a steady-state flow of
heat transverse to the fiber will give a perturbation
o rsing, which couples both radial and angular modes
and gives rise to a two-dimensional kicked system.

The cases of kicking a square well with either an x or
an x? potential are special. These cases have classically
the same Lyapunov exponents as for kicking in free
space,® since reflection at a sharp boundary changes the
global orbit but does not affect its local properties. The
free-space problems can be solved analytically.'>'* It
will, of course, be of much interest to realize these well
studied problems experimentally, if only to verify that
the experimental setup is working. Kicking the one-
dimensional /#0 subspace in the circular fiber is generic,
however, since the effective one-dimensional potential in-
cludes the term /%/r?. One may equally use graded
fibers to achieve generic kicked systems.

Even more things can be measured in fibers than in
the driven Rydberg hydrogen experiment.® Light in a
given mode incident on the train of bumps will undergo
deflections by the bumps; in other words, it suffers tran-
sitions between modes. If the total deflection becomes
large enough, the light exceeds the critical angle, corre-
sponding to the atom ionizing. If the light remains in
the bound modes, it is possible to measure the distribu-
tion in these modes. Important issues in the hydrogen
case such as smooth versus sudden turn-on of the bumps
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can also be explored. '

A standard theoretical calculation is for the mean “en-
ergy” (E,) vs “time” (=number of kicks). This is just
the mean-square angle of light propagation. It is expect-
ed to follow the geometrical-optics prediction up to some
“break time” depending on #, and further spread in an-
gle is suppressed by finite-wavelength ‘localization”
effects, in the generic case. This localization is known to
be a direct analog of Anderson localization in random
conductors.® It should be possible in fibers (but not in
hydrogen) to make measurements directly verifying this
prediction. Figures 5 and 6 of Ref. 8, for example,
might be realized, but similar figures occur in many
references.'® One may also find “quantum resonance”
effects at rational values of z#, e.g., h =2/x. This corre-
sponds to Z(B;+, — B;) =2rxXinteger for many j, which
increases the mode number much faster than the
geometrical-optics prediction.

Many variations on these experiments are of interest.
Using graded profiles, e.g., triangular,'”!® parabolic, !
and if possible'® 1/r, would make contact with other
efforts. Different results are expected for the same total
kicking strength if ¢ is a function of kick number n.
Much fascination attaches?®?! to the case that ¢(n) =¢g
plus a periodic or random function. Similar modulation
of the spacing Z can be done. Noise or dissipation can
be deliberately added to the system. In all of these cases
the theory can be more or less readily worked out, at
least numerically, and key aspects of the theoretical un-
derstanding will be put into practice.

More challenging to the theorist will be the case men-
tioned above where the modes are driven through a two-
dimensional mode space. Here there are some general
arguments of localization theory available but only very
preliminary actual model calculations.?%?? Using fibers
of different cross section, e.g., square or elliptical, will be
of interest. Finally, there is the possibility of using a
kicking potential which mixes polarizations. This will al-
low a detailed experimental study of quantum chaos and
localization phenomena?? in four dimensions, a very im-
portant first.

It may also be possible to make perturbations which
reflect the light appreciably or ones which are too long
and smooth to be considered to be A functions. Instances
of the latter case have been treated with mathematical
rigor?* and localization is proved. However, the “ray”
prediction also gives localization and differs little from
the full theory. The former case is not too different from
the one treated here, for periodic bumps, but cannot be
directly compared with the existing theory of the
Schrodinger equation.

We also mention that a theoretically very similar sys-
tem is channeling,?® for example, of relativistic (100
MeV) electrons or positrons in silicon crystals. Of
course, the experimental milieu is totally different, since
the length scale is a millionfold shorter for channeling.
These projectiles are confined for long distances to
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chains or planes of atoms in the crystal. Changing the
energy changes the relativistic mass (not the speed)
which enters into the dimensionless Planck’s constant.
Growing a crystal with regularly spaced planes with ad-
ditional doping (a superlattice) gives the kicking. One
may change the effective spacing Z of the planes by
channeling at an angle, thus giving a handle on a second
parameter. It is not quite as easy to achieve small noise
and dissipation in channeling as in fibers and one has less
control over the shape of the effective potential holding
the projectiles in the channel. Nevertheless, channeling
technology is rather advanced and interesting experi-
ments in quantum chaos could be done.
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