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Transition in the Relaxation Dynamics of a Reversible DifFusion-Limited Reaction
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The reversible one-species diff'usion-limited reaction X+X=Xis solved exactly in one dimension. We
find that the asymptotic approach to equilibrium exhibits a sharp (second-order-type) transition depend-
ing on the initial density po. The exponential relaxation time becomes infinitely long as po 0.

PACS numbers: 05.40.+j, 02.50.+s, 05.70.Ln, 82.20.Mj

We consider the reversible one-species coagulation
process X+X=X in one dimension. On the hydro-
dynamic level such a system is commonly described by a
diffusion-reaction equation for the local density, p(x, t),
of the form

a = a'
p(x, t) =D, p(x, t) —ktp'(x, t)+kpp(x, t) .

Bx

One validating argument for this level of description de-
pends on a cluster expansion, i.e., an expansion in in-
creasing orders of the strength of the interaction. ' This
expansion takes the form of a hierarchy of kinetic equa-
tions for multiple-point correlation functions which can
be truncated if the correlations between particle positions
are small. This is the case for an equilibrium system
with no inter particle forces and reversible reactions,
where the equilibrium state is a state of maximal entro-

py, and for a nonequilibrium steady-state system if the
reaction probability for colliding particles is small. The
correlations are also small for some systems during the
transient regime following a special initial condition with
small or no correlations. '

The general conditions under which this truncation is
justified are not known quantitatively. In particular, it is
not clear whether the truncation can be used for a sys-
tem that is close to its equilibrium state so that the cor-
relations are small, but where the interactions are strong.
This case occurs in reversible diffusion-limited reactions,
where the interaction between colliding particles is so
strong that they react immediately. ' Although there
are now several exact results for the microscopic dy-
namics of some diffusion-limited reaction models, none
of these applies to this question, mostly because they in-
clude irreversible reactions. ' Such systems approach ei-
ther an equilibrium state with zero density, or a none-
quilibrium steady state with strong correlations.

This Letter presents the first exact results for a rever-
sible diffusion-limited system in continuous space which
achieves a true equilibrium state with detailed balance, a
nonzero density, and no correlations between particle po-
sitions. We study the relaxation dynamics by consider-
ing the time-dependent density starting from an initial
state with no correlations between particle positions, but
with arbitrary density. Our exact solution shows that the
system does not obey any hydrodynamic equation, but

that its asymptotic dynamics at long times [Eq. (15)]
generally depends upon the initial conditions. In particu-
lar, if the initial density is less than exactly half of the
equilibrium density, then the asymptotic dynamics is
dominated by large gaps between particles, correspond-
ing to large correlations between many particle posi-
tions. " These large correlations develop even if all par-
ticle positions are initially uncorrelated.

We now proceed to the analysis. Starting with a spa-
tially discrete system we first explain the equilibrium dis-
tribution for the general process. We then focus on the
diffusion-limited regime to derive the kinetic equation,
and take the continuum limit to obtain the solution.

The kinetic behavior of the system X+X=X is
characterized by three simultaneous processes. (1) The
particles perform random walks with jump rate 2D1
on a lattice with lattice constant l. This appears macros-
copically as diffusion with diffusion coefficient D. (2)
Every particle can generate another one at the same site
with a probability rate b. In the mean-field approxima-
tion b would be identified with the rate constant of the
reaction X X+A'. (3) When the number of particles
N at a site exceeds one, there is a probability rate
al 'W(le 1) that two —of them react and merge into a
single particle. In the mean-field approximation a would
be identified with the rate constant for the reaction
X+X~X.

In equilibrium this system is simultaneously in equilib-
rium with respect to both the reaction and the diffusion
processes. Equilibrium with respect to reaction means
that the probability distribution I'~ of occupation num-
bers W at any particular site is a superposition of the two
equilibrium states with respect to the reaction process:
the vacant state I'~"=6~ 0 and the occupied state

Ptv
' = (1 —6'tv p) exp

a
1 b1

2V! a

(These equilibrium distributions are the stationary solu-
tions of the single-site master equation in number space. )
The relative weight of these two states in the equilibrium
distribution of the spatially distributed system is deter-
mined by the condition that there is also equilibrium
with respect to the different process, because the transi-
tion between occupied and vacant states occur by dif-
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fusive jumps of particles to and from the adjacent sites.
Equilibrium with respect to diffusion means that the sys-
tem is statistically homogeneous and there are no corre-
lations between occupancies of different sites. In partic-
ular, the rate at which occupied sites are vacated (hop
rate times P fq) equals the rate at which vacant sites be-
come occupied:

from the N-body level of description, ' ' but it also follows

directly from the following reasoning.
The probability of finding sites 1, . . . , n empty, E„(t),

changes in time because of the following gain and loss

rates: (1) Sites 1, . . . , n —1 may be empty, site n singly

occupied, ' and the particle at site n may jump to the
site n + 1, increasing E„at a rate

2Dl Pfq =2DI P0q g NPNq.
N=l

(2) [E. ~(t) —E„(r)] —s~I
(4)

The right-hand term above is composed of the probabili-
ty that the site is empty (P0q), times the hop rate into
the empty site of any of the N particles in the two neigh-
boring sites (2Dl NPNq), summed over N. This defines
the equilibrium distribution uniquely as a Poisson distri-
bution with the average value bl/a:

peq e P~ (p i)N
NI

(3)

where peq= b/a is the —equilibrium density.
The diffusion-limited regime is Dp,„«b. Then the in-

teraction between particles at the same site is so strong
that any two particles at different sites have zero proba-
bility of exchanging their positions without reacting.
That is, the partial equilibrium with respect to the reac-
tion processes at each site is reached instantaneous-
ly. Formally, the diffusion-controlled limit is a
b ~, keeping p,q=b/a =const.

Our method of solution for the dynamic problem takes
advantage of the fact that in the diffusion-limited regime
the change in the distribution of intervals between occu-
pied sites does not depend upon any correlations between
adjacent intervals. The time-dependent probability
E„(t) of finding n adjacent sites empty obeys a closed ki-
netic equation. We have derived this kinetic equation

(1/m!)(p ql) e—[E„(r) —E.+ ) (i)]
1 —e

(5)

The first factor above is the probability of finding sites

1, . . . , n but not all sites 1, . . . , n+1, empty. The
second factor is the probability that site n is occupied by
exactly m particles given that it is not vacant, the factor
m counting the particles that can jump. The factor
Dl is the jump rate from site n+1 to site n The . sum

of these rates over all m & 0 is

—[E.(r) —E.+, (i)] ",Di

Each of the above rates is doubled because the same con-
tributions arise from corresponding independent process-
es at the other end of the empty stretch 1, . . . , n.

The resulting master equation is

In this expression the first factor is the probability of
finding sites 1, . . . , n —1, but not all sites 1, . . . , n, emp-

ty. The second factor is the probability that site n is

singly occupied given that it is not empty, and the third
factor is the jump rate from site n to n+ l. (2) Sites
1, . . . , n may be empty, and site n + 1 occupied by exact-
ly m particles, any one of which may jump to site n, de-

creasing E„at a rate

aE.(t) p, l
=2Dl

I [E„)(t)—2E„(t)+E„+)-(t)]+2Dp,ql '[E„(t) E, ((t)l . — —
1 —e

(7)

For the continuum limit, i~ 0, we define the probability
E(x,t) of finding a given interval of length x empty by
E(nl, t) =E„(t). This pr—obability obeys the master equa-
tion

8 |) 8E(x,t) =2D, E(x,t)+2Dp,„E(x,t) . (8)
8X X

The boundary condtions are E (0,t) = 1, because the
point particles occupy a set of measure zero, and E(ex, t)
=0 as long as the concentration is nonvanishing. The
density p(t) is the probability that a segment of
infinitesimal length dx is not empty, divided by the
length dx:

p(t) = lim—1 E(dx, t) 8—
E(x, t)

dx 0 dX 8X

We now consider the time-dependent approach to

equilibrium. From this point we adopt the dimensionless
variables x, t, and c, defined by

x =ppqx, t =2peqat,

E(x,t) =E(x,t), c(t) =p(t)/p. q.

Dropping the overbars, Eq. (8) becomes

a =a' aE(x, t)=,E(x,t)+ E(x, t) .
Bt Qx2 Bx

(lo)

This equation has the stationary solution E0(x) =e
and there are two classes of time-dependent elementary
solutions. (1) Solutions that oscillate in space and decay
relative fast for large values of x:

E (x, t) =e " sin(qx)e
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The transition in the exponential relaxation time
reflects the domination of the dynamics by large gaps be-
tween particles, which occur due to large fluctuations in
the spatial distribution of particles at low initial densi-
ties. The length of these gaps can decrease only by dif-
fusion of the bounding particles at their ends. We have
checked that this dominance of fluctuations disappears if
we extend our model system to allow for spontaneous
particle generation with any positive rate constant. '
This irreversible reaction mechanism "breaks up" the
large gaps.

Our solution illustrates several points about diffusion-
reaction systems in general. First, the time-dependent
density in a diffusion-reaction system does not necessari-
ly obey a rate equation, i.e., an autonomous ordinary
differential equation with coefftcients that are indepen-
dent of the initial conditions. Second, the choice of an
initial condition with no correlations between particle po-
sitions does not ensure that there is a transient regime
where one can truncate a cluster expansion to obtain a
rate equation. Finally, spatial fluctuations can dominate
the dynamic behavior arbitrarily close to an equilibrium
state. The absence of correlations in the equilibrium
state, which follows from the absence of an interaction
potential in our case, does not help in this respect. The
asymptotic approach to equilibrium can still be dominat-
ed by correlations on the microscopic level.

Our method of solution is closely related to the
method of interparticle distribution functions (IPDF)
used earlier for the exact solution of the irreversible dif-
fusion-reaction system X+A'~A' with and without
spontaneous single particle creation Y X. In fact, the
IPDF is proportional to the second derivative of E(x,t)
with respect to x. This allows for the investigation of
spatial correlations. It would be desirable to develop this
method into a general systematic technique which could
be applied to other interesting reaction schemes with
transitions, ' and to higher dimensions, where the report-
ed transition may or may not be present.

Finally, we note that it is evident from our derivative
of Eq. (8) from the microscopic level that the diffusion-
controlled regime is a low-density limit of this system.

We are currently exploring systematic corrections to the
diff'usion-controlled limit for higher densities.
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