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Nonlocal Eff'ects in Spiral Waves
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A theory of spiral waves is presented that includes nonlocal effects due to wave-front interactions.
Evolution equations for the spiral wave front are derived from the basic reaction-diffusion system, using
a singular perturbation method. It is shown that nonlocal effects play a crucial role in stabilizing the dy-
namics of spiral waves and may substantially affect their spatiotemporal behavior. In particular, condi-
tions are found under which spiral cores expand in time. An expression for the normal velocity is derived
and compared with previous results.

PACS numbers: 87.22.As, 05.45.+b, 82.40.Fp

Rotating spiral waves have been observed in a variety
of chemical and biological nonequilibrium systems; oxi-
dation waves in reactive solutions' and waves of elec-
trical and neuromuscular activity in physiological sys-
tems are common examples. Early attempts to describe
spiral waves employed known geometrical forms such as
the involute of a circle or the Archimedian spiral.
When rotated at fixed angular velocities these forms de-
scribe spiral waves whose normal velocities are constant
along the spirals. It was later realized that curvature
may significantly reduce the normal velocity in the vicin-

ity of the spiral core and a better description of spiral
waves, based on the velocity-curvature relationship, has
been proposed. There are, however, additional effects,
nonlocal in nature, that have escaped theoretical con-
sideration: parallel portions of the spiral wave-front in-
teract with each other during propagation. In this
Letter I present a dynamical theory of spiral waves that
includes both curvature and wave-front-interaction
effects.

The significance of wave-front interactions follows in

part from the consideration of the effect of curvature
alone. Away from the spiral tip curvature acts to smooth
out small perturbations. In the vicinity of the tip, on
the other hand, curvature becomes a destabilizing factor:
Upon straightening a small segment that contains the
tip, curvature is reduced, normal velocity is enhanced,
and further straightening is favored. Figure 1 illustrates
these considerations. This instability causes wave-front
interactions to become particularly significant: The per-
turbation illustrated in Fig. 1 is quenched in the presence
of a wave front ahead of the tip that exerts a repulsive
force. The dynamics and form of the spiral wave will be
sensitive to the magnitude of that force. In the systems
that have been introduced above a repulsive force origi-
nates from the refractory period that is imposed on sites
at the wake of a propagating wave front. ' '

I will be concerned here with two-dimensional homo-
geneous media described by reaction-diffusion equations
(RDE's) of the form

c),U LU+ N(U) +D & U,

X=ppcos(cr —cot)+ppa sin(cr —cot),

Y =pp sin(a —cot ) —ppa cos(a —cot ),
(2a)

(2b)

parametrized by a = (p /pp
—1)', where p =

~
X

~

=(X + Y ) 'I, and rotating with an angular velocity co.
The involute coordinate system (cr, r) is defined by the
relation

x X(a,t)+rr(at), (3)

FIG. 1. Schematic illustration of the effect of curvature.
Normal velocity (indicated by arrows) decreases as curvature
increases. As a result small perturbations (dashed curves) that
occur significantly far from the tip always decay, while those
involving the tip may grow.

where U represents a set of fields and L and N are, re-
spectively, the linear and nonlinear parts of the reaction
kinetics. For the sake of simplicity all diffusion con-
stants are assumed to be equal; thus D in (1) is a scalar.
The generalization to nonequal diffusion constants is
straightforward. It is also assumed that N(0) =0. The
solution U =0 represents the quiescent state of the medi-
um.

It is advantageous to work in a coordinate system hav-
ing a spiral structure and rotating with a fixed angular
velocity. In such a frame one may expect the RDE's to
decompose into an "unperturbed" part, one dimensional
in a coordinate normal to the spiral, and a perturbation
P reflecting among other things the fact that the coordi-
nate system is only an approximation of the real spiral
wave. A convenient choice is that of an involute of a cir-
cle,
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where r" is a unit vector normal to the spiral. The range
of the normal coordinate r is chosen to be ( —d/2, d/2),
where d =27tpo is the pitch of the involute spiral. Figure
2 illustrates the notations.

The ROE's in the rotating involute frame become

LU+ N (U) +D a, U+ copp a„U =P,
p = —DK a,u+a, u+ na.u —DK,'a.'u,

(4a)

(4b)

~min+4

FIG. 2. The involute coordinate system (a, r) The position.
vector X is given by Eqs. (2).

where Ki(cr, r) =Kp/(1+rKp), Q(a, r) =co ppDK—i,
and Kp(o) =(ppo) ' is the involute curvature. To avoid
the singularity of EC0 at o.=0 we consider 0 values larger
than some lower bound o;„. The optimal choice of 0;„
is that which minimizes the perturbation P. More speci-
fically o;„ is chosen such that DK|(a;„)«capp and all
other terms in P are at most of O(DK|).

Reaction-diffusion systems of the form of (1) but in

one-dimensional space have been studied extensively.
Solitary-wave solutions propagating with constant veloci-

ty have been found for specific realizations of the reac-
tion part of (1).' Let H(x —cpt) be such a solution.
Evidently H solves the unperturbed part of (4) as well

provided co =mpp. In fact it is a homoclinic orbit of that
system biasymptotic to a saddle point representing the
rest state of the medium. The asymptotic forms of the
solitary-wave solution can be determined from a linear
analysis around the saddle point. The dominant com-
ponents of these forms are those eigenmodes whose ei-
genvalues have the largest negative and smallest positive
real parts.

Extended patterns may conveniently be viewed as sys-
tems of many interacting localized structures. This ap-
proach has been used in the study of kink dynamics"
and spatial chaos' " in one-dimensional systems, and
will be used here to construct an approximate spiral solu-
tion. To this end the range of a is split into segments
o;„+2n(l—1)~ ot & a;„+2tcl representing parallel
portions of the spiral, as shown in Fig. 2. The localized
structures to be used in this construction are solitary
wave fronts that are peaked on these segments and solve
the unperturbed problem: H»(o, r)—:H(r+n(o)d —kd),

where n(crt) =l. A general spiral solution is now written
as a superposition of displaced solitary wave fronts:

U(a, r, t) =QH» (o,r —
g» )+R(a, r, t), (5)

k

where R is a correction term and the displacements
g» = g(a», t) are evaluated at cr» =a+2n'[k —n(a)].

The form (5) should be understood as follows. Given
a point (a, r) in the plane, the main contribution to U
comes from the wave front that is peaked on o.„~ )..
H(r —g(cr, t)). Next in order of importance are the con-
tributions from the nearest neighbors, H(r-ed —g(a
~2', t)), and so on. The condition DKi(a;„)«cppp
itnplies that the wave fronts are widely separated (large
pitch). Consequently the correction term R and its par-
tial derivatives with respect to o. and time are expected
to be small, and one may consider only nearest-neighbor
interactions.

The geometrical form of the spiral wave is given by
x=X(o,t)+g(o, t)r"(cr, t), and our next objective is to
derive partial differential equations for the displacements

Upon introducing (5) into (4) one gets to leading or-
der

X(R=gN(H») —N gH»
k , k

(a, g,
—+DK, + na. , g, DK,'a—.',g, )H,',

where

(6)

X —=L+VN(Hi ) +Da„+cop pa, , (7)

H» =H»(o, r —g»), and the prime denotes differenti-
ation with respect to the second argument. The operator
Xt has a null vector ( or zero mode), H/ This i.s a
consequence of the translational invariance of (1). Let
Gt be a null vector of the adjoint operator Xtt where the
inner product is defined to be

t d/2
(f,g) = g „drf; [n(o), r]g; [n(o),r] .

i n(o)

The condition that the right-hand side of (6) is orthogo-
nal to GI results in the dynamical equation

a, g, = DK, , n, a.,g, +D—K,',a.', g,—

+FL (gt +1 g( +d ) +Ftt (gt —
gt —1+d ),

where Kl t—=Kl(at, gt), At=A(ot, gt), and FL and F~
are, respectively, the dominant components of the left-
and right-hand asymptotic forms of H. In deriving (8)
use has been made of the localized nature of H(x) and
G(x) around x=0.

The nonlocal terms FR and Fc in (8) represent, re-
spectively, the interactions of a given wave front with
those behind and ahead of it. The functional forms of
these terms are in general exponential for they follow
from a linear analysis of the unperturbed problem
around the quiescent state U=O. I will consider here
solitary wave fronts with monotonic heads, Fz (x)
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FIG. 3. (a) Asymptotic profile of ( obtained by numerical
integration of (8). Parameter values used are p0=0.2, o;,
=1.0, co=0.7, 8 =0.002, aR = —aL =&.0, gz =10.0, gL =3.0,
and vL =pL =0.0. (b) Asymptotic spiral (solid curve) and in-
volute spiral (dashed curve) for the parameters of (a).

=ag exp( —rl~x), but will allow for monotonic as well

as oscillatory tails:

Ft (x) =at exp( —
) rL)cxs(ov L+xP )L.

The eigenvalues g~ and gz+ ivz follow from the soli-
tary-wave profile. The coefficients az and az require, in

addition, the evaluation of certain integrals which are
not displayed here.

A system (8) consisting of two wave fronts has been
integrated numerically using the Crank-Nicholson
scheme. The exponents gg z and the coefficients a~ z
were chosen to simulate conditions that are frequently
met in chemical and biological applications: gz «q~,
az (0, and az & 0. In a considerably wide range of pa-
rameters, and for monotonic tails, g(a, t ) evolves toward
a stationary profile g(cr), a typical form of which is

displayed in Fig. 3(a). The corresponding spiral wave is
shown in Fig. 3(b). The dashed curve is the involute
coordinate system. The real spiral differs significantly
from the involute only in the vicinity of the spiral core.

The dynamics of the spiral tip is illustrated in Fig.
4(a). The convergence to a stationary g profile in the
case of monotonic tails implies a stable circular motion
of the spiral tip (solid curve). The radius of circulation

X

FIG. 4. (a) Dynamics of spiral tips. Steady circular motion
obtained with a monotonic tail (solid curve) vs an outward
spiral motion obtained with an oscillatory tail (dashed curve).
Parameter values are as in Fig. 3 except that vL =2.0 in the
latter case. (b) Demonstration of core expansion. Spiral wave
at an early stage (solid curve) and at a later time with larger
core (dashed curve). Parameter values are as in Fig. 3 except
that vL =2.0.

is found to increase monotonically with gz, the rate at
which the wave front tails off, when co and all other pa-
rameters are held constant. This monotonic growth ter-
minates at a point at which the circular motion becomes
unstable and noncircular tip dynamics set in. A com-
plete account of the latter, commonly referred to as "tip
meandering, " ' ' is postponed to a future work as it re-
quires additional considerations (see discussion below).

When the nonlocal terms in (8) are removed no circu-
lar motion is observed; the spiral core typically expands.
This observation is consistent with the heuristic argu-
ment for the destabilizing role of curvature and em-
phasizes the importance of nonlocal effects in stabilizing
the dynamics of spiral waves. Core expansion may possi-
bly be a real phenomenon when the tails are oscillato-
ry. ' In that case the wave front that contains the tip
tends to lock at a fixed distance from the wave front
ahead of it, a distance that corresponds to one of the
maxima of the oscillatory tail (or minima of threshold of
excitation ). As a result the gradient of normal velocity
in the vicinity of the tip becomes ever Aatter and the ten-
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+FR(gl gl —1+d) DK(rJ(, t) .— (9)

In the asymptotic regime where i;(a, t) attains a station-
ary profile, Eq. (9) admits the familiar form U„=c(a)
—DK(o), where c(o), an undetermined function in
previous studies, is given by the first three terms on the
right-hand side of (9). At large o values, for which cur-
vature effects are negligible, the expression for e reduces
to the dispersion relation of uniformly spaced wave trains
of impulses. '

The present theory is still incomplete in so far as the
dynamics of the spiral tip is concerned. The tip is a lo-
calized structure in a two-dimensional space, but only
the structure along the normal coordinate has explicitly
been considered. As a result only one degree of freedom,

dency to curl, ever weaker. The spiral tip therefore un-
dergoes an outward spiral motion depicted in Fig. 4(a)
by the dashed curve. The phenomenon is further illus-
trated in Fig. 4(b) where two forms of the spiral wave at
different instants are shown. An interesting consequence
of this result, which may bear on the problem of cardiac
arrhythmias, is the possible elimination of spiral waves
in finite systems. Experiments aimed at testing core ex-
pansion should be easier to conduct in chemical sys-
tems. ' Oscillatory tails are expected to appear in pa-
rameter range that precedes the bifurcation point to uni-
form oscillations.

Equation (8) can be used to derive an expression for
the normal velocity of the spiral wave front, v, =x. r"

=(B,x+ro8 x) r", where x=X(cr, t)+g(o, t)r(rr, t). Ex-
pressed in terms of the spiral-wave curvature,

K(a, t) -(x y —y x )/(x'+y')"',
the normal velocity reads

U&( [c,rt) pcop+F (Lg t+] gt+d)

g(cr;„,t), describes the motion of the tip in the rotating
frame. In order to allow for unconstrained tip dynamics
a tangential degree of freedom should be introduced as
well. Work in that direction is in progress.
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