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Gauge Field, Aharonov-Bohm Flux, and High-T, Superconductivity
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In a spin- 2 Heisenberg model with short-range antiferromagnetic order, a hole making a closed loop
on one sublattice is subject to a slowly varying spin-quantization axis and picks up a phase equal to half
the solid angle subtended by the spin orientation around the loop. The phase can be represented by an
Aharonov-Bohm flux resulting in a U(l) gauge theory. For a finite hole density this model leads to su-
perconductivity even in the presence of Coulomb repulsion. The gauge field also enhances low-energy
particle-hole excitations, leading to a T law for the normal-state resistivity.

PACS numbers: 74.65.+n

It is commonly accepted that the essential physics of
the copper-oxide superconductors can be modeled by
two-dimensional sheets of copper and oxygen orbitals.
The insulating compounds consist of spin- —,

' local mo-
ments on the copper sites and doping introduces holes on
the oxygen orbitals. Anderson' and Zhang and Rice
argue that a symmetrized orbital of the oxygen hole
forms a singlet with the copper moment. The resulting
complex can be considered a hole in a square lattice of
copper orbitals, md described by the one-band t-J model
where t describes nearest-neighbor hopping, subject to
the constraint of no double occupation on any site, and J
is the exchange. The inclusion of direct oxygen-oxygen
overlap leads to a substantial further neighbor hopping
between the singlet complexes due to direct overlap and
to an expansion of the size of the singlet. Thus we pro-
pose that the one-band model should be extended to a t-
t'-J model, where t;, and t~'k denote hopping on the oppo-
site and the same lattice, respectively. (We divide the
square lattice into A, B sublattices as labels only, without
assuming Neel ordering. ) t and t' are strongly renormal-
ized and are very difficult to compute from bare values
given by band calculations.

In a locally antiferromagnetic (AF) environment, the t
and t' terms have very diff'erent physical consequences.
A hole hopping from the A to 8 sublattice leaves behind
a misoriented spin and therefore destroys the local AF
order. By the same token, a hole can hop coherently
only on the same sublattice, so that t&&J produces a
t'= J. In this paper we assume that the t term has
done its job in disordering the spins and we focus on the
eff'ect of t' which we expect to be ~J with contributions
from both direct hopping and via t as mentioned earlier.

A number of workers have pointed out that the spin
fluctuation and its coupling to the holes should be de-
scribed by a compact U(1) gauge theory. In particular,
Weigmann has studied the t'-J model with disordered
spin (which he denotes as a quantum paramagnet). He
pointed out that holes on opposite sublattices couple to a
U(1) gauge field which represents spin fluctuations with
opposite charges, resulting in superconducting pairing.
Wen recently developed a phenomenological description
with similar results. The treatment so far is restricted to
a few holes moving in a spin background. In this paper
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and Lq =g~ik~(bI bj+fj*fz 1). We hav—e used the
complex spinor notation bI =(bIt, bIt) so that Qi =b~ rxbj
represents the instantaneous spin orientation (or quanti-
zation axis) on site j. Note that bj ~ b~ e' ~' leaves Q~
invariant. If holes are absent, b~~b~ =1, and we can
parametrize bt =cos(8/2), bl =sin(0/2)e '~, where O, p
are the Euler angles of O. For any pair of spinors we
have the identity

b,'b, =e'""'~ —,
' (1+Q, Q, ) ~'I2 (3)

where m12 is the solid angle subtended by the unit vectors
z, Q~, and Q2. Using Eq. (3) we can readily see that the
first term in Eq. (1) reproduces Haldane's Berry phase
for a path-integral representation of spin —,'. Haldane
has shown in a large-S expansion that LJ reduces to the
nonlinear a model in the long-wavelength limit, i.e.,
LJ=fdrcg '(8Q/r)x„), where xo=cz, Q(r) is a unit
vector corresponding to the local sublattice magnetiza-

we first reconsider this limit and provide a description of
the gauge field in terms of the instantaneous sublattice
magnetization. This physical picture will prepare us for
the second part of this paper, which treats the t'-J model
with a finite concentration of holes.

We employed the Schwinger-boson-slave-fermion for-
malism to handle the constraint of no double occupation;
i.e., in the t and t ' terms the fermion operator is
c; =f;b;, where b; is a boson operator which carries
the spin index and f; is a spinless fermion operator
which creates a hole on site i relative to half filling. We
restrict the Hilbert space to the constrained subspace
satisfying P b; b; +f; f; =l.

The quantum partition function can be written as
a functional integral, Z =fdb; df; dA, ; exp( f(L dz), —
over complex b;, Grassmanian f;, and time-independent
Lagrange multiplier field X;, and L =LJ+L, +L~, with
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tion, c is the spin wave velocity, and g is an effective cou-
pling. For g & g„ the o. model has a disordered ground
state' " with a gap 2h, , for triplet excitations and a
correlation length g, =c/2h, .

Now we are ready to interpret the Lagrangian in the
presence of a few holes. We note that L, corresponds to
a tight-binding Hamiltonian on the A and B sublattices
separately with a time-dependent hopping matrix ele-
ment t jb; (r)b, (r) Sin.ce i and j are on the same sub-
lattice, b; is slowly varying and corresponds to Q(r) and
—O(r) on the A and B sublattices, respectively. Using
Eq. (3) we see that b; (z)bj(r) =e'"" . It is natural to
associate a lattice gauge field A;j on the bond ij equal to
tv;j/2. The associated time-dependent magnetic flux
through an elementary plaquette in sublattice A is then
equal to the solid angle on the unit sphere subtended by
the four Q(r, z) on the corners of the plaquette. Thus
we see that the fluctuations of the 0 field gives rise to
an

effective

electromagnetic field which acts on the
holes. It is also clear that the holes on sublattice 8 cou-
ple to the gauge field with a "charge" of opposite sign
since the solid angle swept out by —A is of opposite
sign. Another way of understanding the sign difference
is that the gauge field is associated with the staggered
quantization axes.

We remark that while L obeys local gauge invariance
b b e', f fe', L, does not. Using the constraint,
the first term of Eq. (1) becomes —iAp(f~~fj+bjtbj),
where Ap =ibj Bbj/rir. The A+~~fj term can be added to
Eq. (2) to produce 8/Br 8/Br —iAp and a gauge-
invariant Lagrangian in the limit of zero hole density.
The time component Ap can be related to the spin struc-
ture around a space-time plaquette in the same way as
we did for a plaquette in space.

Now we can give a physical picture of the pairing
mechanism discussed by Wiegmann. Consider the Feyn-
man paths of two particles on opposite sublattices which
begin and end close to each other. An Aharonov-Bohm
phase factor exp( ~ ifA dl) is associated with each
path and the propagation amplitude will be suppressed
by the factor exp(i/A dl) =exp(ip), where p is the total
flux enclosed by the loop formed by the two paths. If the
spins are disordered we expect strong suppression of the
propagation amplitude, unless the two paths are always
within g, of each other. Thus the pair on opposite sub-
lattices are bound and propagate essentially as a free bo-
son. A finite density of these pairs will Bose condense.
Note that the pairing mechanism relies on coherent
propagation on a length scale »g, and is inherently as-
sociated with the disordered state. However, this state is
analogous to the bipolaron limit, in that T, is the Bose-
condensation temperature of tightly bound pairs and

even above T, a finite energy is required to break up the
pair into single-particle charged excitations. This does
not agree with tunneling experiments which show a gap
vanishing above T, . Clearly this picture is valid only if
the average distance between holes is larger than g„be-
cause the exchange between holes has been ignored. Ex-
perimentally it appears that in order to suppress the Neel
ordering, sufficient density of holes must be introduced
so that this criterion is violated.

In the remainder of this paper we treat the opposite
limit kF(, » I. Using the relation between spin solid an-
gle and flux, the typical "magnetic" flux within an area
of g, is unity, so that kF(, »1 implies the magnetic flux
per particle is small, so that a perturbative treatment is
possible.

The t'-J model given by Eqs. (1) and (2) can be treat-
ed systematically in a I/N expansion. We invert the
quantization axis on the 8 sublattice by introducing
b e b so that b; and b;+ i form a slowly varying
field. Following Arovas and Auerbach, " we extend the
o. sum from 1 to N and introduce a mean field
D;j =P (b;b j), where i,j are nearest neighbors. For
W =2 this corresponds to the formation of a singlet bond.
For 2S/N (0.19 the mean-field theory corresponds to a
short-range resonating-valence-bond (RVB) state with
an energy gap 6, . ' We shall assume that the eA'ect of t
and doping has stabilized this mean-field state. Fluctua-
tions around this mean field were treated by Read and
Sachdev, ' who produced the effective Lagrangian

I.,= d'r [i( (|1„—iA„)z.('+ (a,'/c')
[ z. ('f, (4a)

where z (r;) = —,
'

(b; +b;+& ) corresponds to the slowly
varying sublattice magnetization and A„ is related to the
phase fluctuation of D;~. By integrating out z from Eq.
(4a) we obtain the Lagrangian which controls the fluc-
tuation in the gauge field,

I.j = „d r c F„,/16e (4b)

where F„,=8„A, 8„A„and e =&,—/8n (for N =2).
This treatment can readily be extended to include Eq.
(2). Suppose we start with second- and third-neighbor
hopping tz and t3. The mean-field D;j implies (b; bj) 0
so that hopping matrix elements t 2 and t3 are generated,
resulting in a band structure 4t 2 cosk„cosk~+ 2t 3

x (cos2k, +cos2kJ). Depending on the sign and relative
size of t2 and t3, the band minimum may be at (0,0)
[(jr,O), (0, jr)] or (+ jr/2, +' jt/2). For simplicity we treat
the case with a single minimum (otherwise additional
band labels are needed) and expand about it. Including
fluctuations about the mean field following Read and
Sachdev produces short-range interaction terms plus the
important coupling to the gauge field,

r r
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Equations (4a)-(4c) were first written down phenome-
nologically by Wen.

We emphasize that Eq. (4) is valid only for co, q & d„.
In the absence of holes Eq. (4b) predicts a mode with
linear dispersion. It is a singlet excitation created by F„,
which in spin language is a rather complex operator cor-
responding to the topological charge density' Q 8„Q
ic8,0, i.e., the solid angle subtended by three spins as
discussed earlier. This mode does not enter (S(r,
r)S(0)) but should contribute to the specific heat. ' We
shall now see that this mode is strongly modified in the
presence of a finite areal density n =n& =nz of holes.

As mentioned earlier if kF(, » 1, we can start with the
Fermi sea and treat gauge fields perturbatively. We
redefine A„with a factor of e/c to conform with elec-
tromagnetic convention and adopt the transverse gauge
V A=O. The longitudinal part Ap decouples and gives
rise to a Coulomb potential 4' /q . It is convenient to
include the A term in Eq. (4c) in defining the bare
transverse field propagator D„,(x) =(T[A„(r,r)A, (0)]),

p 47rc (bp~+qpq~/ i q i )

where c~o=4zre n/m =d, eF/2x. The coupling to the
transverse field A is given by usual A. J and (f~f~—n~)A terms. Unlike the electron gas where the cou-
pling to transverse fields is small by vF/c, here the spin-
wave velocity c =J is comparable or less than vF
= n ' t'; new physics emerges. Fortunately if c & vF the
Migdal theorem is obeyed and a systematic diagrammat-
ic analysis analogous to the phonon problem is possible.

The first step is to write down the screened propagator
D„, which is obtained from D„, by replacing m,~ in Eq.
(5) by co,p

—2(e/mc) 2kFIIp(q, co), where IIp is the usu-
al 2D free fermion polarization bubble. For co « vFq and

q & 2kF, the correction term is a constant which exactly
cancels m,z and we have

D„,(q, co+iri) =4zc'(b„, q„q,/~ q ~')—
ic [co cq +—ico,pco/vFq] '. (6)

For co»vpq, Hp is negligible and D„,=D„v . For a
given q, it is clear that for both co & vFq and co &cq,
ReD(q, co+iri) is negative for co & co,~ and exchange of
D„, will lead to pairing of the gauge-invariant pair prop-
agation (fj(r, r)f~(r, r)fz(0)fe(0)). In the spirit of
BCS, we construct a retarded interaction by replacing
D„, by D„, (co=q =0) for co & co, and zero otherwise
Clearly co, is at least h,, but its determination requires a
Lagrangian valid for co & h, Physical considerations
lead us to set m, = 6,, because excitations with co, cq & h,,
are indistinguishable from those of a Neel ordered state
which we assume to be not superconducting. In analogy
with phonon exchange, we obtain a dimensionless cou-
pling constant X= (e/mc) kFm/co, ~= l. [The restric-
tion qg, & 1 may reduce X by (kF(, ) ' upon averaging
over Fermi surface. ]

In addition to the exchange of the transverse gauge
field, we also have to include the longitudinal field, which
in the static limit is simply a screened Coulomb inter-
action —4xe /(q +x ), where x 4zce dn/dp N. ote
that the dimensionless coupling constant is p = —1 in the

q 0 limit, and exactly cancels p=1 of the ordinary
screened Coulomb repulsion. Because of the diA'erent q
and m dependences, there will probably be some residual
attraction left. An intrinsic difficulty of all previous at-
tempts to raise T, by exchanging high-frequency excita-
tion mp such as plasmons or excitons is that the renor-
malized Coulomb repulsion p* =p/fl + (p ln(eF/cop)]
grows with increasing cop. Our mechanism avoids this
problem by canceling out the Coulomb repulsion, leaving
A. = 1 so that the theory predicts a uniform energy gap 4
equal to a fraction of co, =5, For sufficiently large h„,
a substantial part of the Fermi sea may participate in the
pairing, with a relatively short coherence length g given
by (kF = eF/6, or g/g, = vF/c which can be of order l.

The coupling to low-lying transverse gauge fields has a
profound effect on the normal-state properties. Very re-
cently, Reizer' pointed out that in ordinary metal, cou-
pling to a transverse electromagnetic field leads to a
scattering rate for electrons of order (vF/c) kT. His ar-
gument can be directly applied to the present problem in
the normal state. For simplicity let us consider a single
fermion with energy co above the Fermi energy. It de-
cays by emitting Bose excitation with spectral density
given by ImD(q, v), where v& co. In Eq. (6), ImD
= v/vFq is the usual density of particle-hole excitations.
The important point made by Reizer is that for trans-
verse excitation, ReD ' vanishes as q . Thus coupling
to the transverse gauge field eA'ectively enhances the ma-
trix element for the excitation of long-wavelength
particle-hole pair. A simple dimensional analysis yields
the result that in 2D, the decay rate is z '=) eF(co/
e~), where the energy scale is e~ =c kF/A, . We recall
that the f Green's function is not gauge invariant and
has no physical meaning. The physical quantity is the
conductivity cr(co) which is computed with an f bubble
with self-energy and vertex correction, and the latter
converts z ' to the transport time rt, ' which requires an
additional factor of 1 —cos0. This leads to
r,„'=A.eF(co/e~) . At finite temperature T & T„we
expect co to be replaced by T so that the conductivity
should be given by ne ri,/m, with ri, ' =) eF(T/e])
A long-standing mystery about the normal-state resistivi-
ty of oxide superconductors is that rt, is approximately
kT. We have identified a source of strong inelastic
scattering and, while our result is limited to 6,, & T & T„
it may well be consistent with the experimental data.

A second eA'ect of the strong inelastic scattering is that
by the Kramers-Kronig relation, the real part Z'(co) of
the f self-energy also goes as co i, so that the spec-
tral weight a = (1+8Z'/8co) ' = co

'~ . The physical
Green's function (c c ) is a convolution of the f and z
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Green's functions in ro space, and the ro'l dependence
should show up in the single-particle density of states ob-
served by tunneling for m above the energy gap. The
convolution will smear the usual square-root singularity
at the gap edge, and increase the gap for quasiparticle
excitation to 5+6, We should also include the attrac-
tion between f and z mediated by the gauge field using
Eq. (4). Our preliminary conclusion is that the joint
density of states is constant so that a bound state is al-
ways formed below 6+6,, and the low-lying quasiparti-
cles carry both spin 2 and charge. Nevertheless, the
tunneling density of states should show substantial devia-
tion from BCS theory as well as the usual Fermi-liquid
behavior far above the gap.

The superconducting state we find has s symmetry'
and the energy gap is isotropic. Nevertheless, it differs
from BCS theory in an important way; Anderson's
theorem regarding nonmagnetic impurities is not obeyed.
The pairing is between holes on A and B sublattices; the
two experience different random potentials and the com-
pensation leading to Anderson's theory does not occur.
Experimentally it is known that the copper-oxide super-
conductivity is destroyed by nonmagnetic doping in the
plane. This distinguishes the copper-oxide system from
BaPb Bi~ — 03 which is in the dirty limit.

The spin correlation (S(r, r)S(0)) is a convolution of z
Green's functions and exhibits a gap of 2h, , correspond-
ing to triplet excitation. " The coupling to gauge field
and to holes should modify this quantitatively but not
qualitatively so that neutron scattering should be mainly
sensitive to the spin gap 2A, . Since the onset of super-
conductivity affects only d, /eF of the holes, it should
effect the neutron scattering only as a small correction.

Our model also raises an interesting possibility con-
cerning the difference between single-layer and multilay-
er copper-oxide structures. Even if the electronic hop-

ping between the layers is weak, the exchange between
the spins on different layers may be sufficiently strong to
correlate them if they are not frustrated as in La2Cu04.
In this case our mechanism will lead to an additional
pairing channel between holes on neighboring layers.
The interlayer exchange may also reduce A„so that a
quantitative treatment may be difficult. A second com-
ment is that our pairing mechanism per se is not restrict-
ed to 2D. In 2D it may operate over a wider range in pa-
rameter space within the t-t'-J model because the 2D
Heisenberg AF is easy to disorder. We speculate that
the 3D copper-oxide systems are not superconducting be-
cause the hole concentration is so large that the ground
states are Fermi liquids. It will be interesting to reduce
the hole concentration in these systems by doping to see
if an AF phase boundary can be reached and whether su-
perconductivity can be found in a narrow region near
this phase boundary with short-range AF order.

In summary, we believe the U(l) gauge theory is
the language to describe the original RVB picture of An-
derson, which envisions a liquid of holes in a back-

ground of singlets on opposite sublattices. Indeed, for
short-range RVB states the sublattice label for holes is a
topological property' and singlet pairing of holes on op-
posite sublattices is a natural consequence of this picture.
Of course our theory is still incomplete in that the role of
t is assumed and not fully elucidated. Our main worry is
that the t term may produce a spiral state which induces
a coherent admixture of the two sublattices and singlets
on the same sublattice. ' This latter effect is pair break-
ing for the superconductivity discussed here. Fortunate-
ly, the hopping matrix element is expected to be small,
= Jn and there should be significant parameter space in

a t-t'-J model where the superconductivity survives. It
will be interesting to study the t-t' Jmode-l by the Monte
Carlo method, because it tnay be far richer than the
standard Hubbard model itself.
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