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Optical Dephasing in Disordered Semiconductors
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We demonstrate that optical dephasing in disordered semiconductors does not require quasiparticle in-
teraction but can be solely caused by disorder. We show that localization effects strongly inAuence the
optical-dephasing signal by calculating the nonlinear polarization, taking into account disorder nonper-
turbatively. Decay times of the order of fs to ps can be expected depending on the ratio of diagonal dis-
order and intersite coupling. It follows that dephasing experiments performed on disordered semicon-
ductors cannot be analyzed simply in terms of quasiparticle interactions.

PACS numbers: 72. 15.Rn, 42.50.Md, 71.55.JV

The interaction of carriers with phonons determines
most of the steady-state and transient properties of disor-
dered semiconductors (for a recent review, see, e.g. , Ref
1). This interaction also governs the energy relaxation
of excited carriers in a nonequilibrium situation, e.g. , un-

der optical excitation. The underlying processes can be
described successfully in terms of hopping in the band
tails on a time scale much larger than picoseconds. On
the other hand, the investigation of the very fast process-
es immediately following an excitation with a short light
pulse is still the subject of considerable experimental
work. In particular, in the case of amorphous semicon-
ductors like a-Si:H pump and probe experiments (see,
e.g. , Ref. 2) have been widely employed to study the en-

ergy relaxation of carriers close to the mobility edge on a
picosecond and subpicosecond time scale.

Alternatively, the interaction of excitations with pho-
nons can also be studied by photon echo ' or transient
four-wave-mixing experiments in the stimulated pho-
ton echo configuration. In these experiments the sample
is excited by two very short laser pulses with a time sepa-
ration z and k vectors kl (first pulse) and k2 (second
pulse). A photon echo then is observed at a time 2z with

respect to the first pulse in the case of an inhomogene-
ously broadened spectral line. In the four-wave-mixing
experiment a third probe pulse is diffracted by the grat-
ing produced by the first two excitation pulses. In both
experiments the resulting signal is asymmetric with
respect to i=0 in the direction 2k2 —k1, in the case of
an inhomogeneously broadened transition, since then the
diffracting grating corresponds to a phased array. The
amplitude of the signal is proportional to the nonlinear
polarization (P(2z)) and typically decays according to
exp( —2z/T2), with T2 the dephasing time. This de-
phasing time is usually related to quasiparticle interac-
tions like scattering with phonons or other excitations.

The interpretation of the dephasing process in terms of
quasiparticle interaction is justified if the sample under
consideration can be taken as an ensemble of mutually
noninteracting two-level systems (as in the classical pho-
ton echo experiments on ruby ). The same is true for

the case of a perfectly ordered crystalline semiconductor.
A crystal can be described by an ensemble of two-level
systems characterized by k vectors if the time scale is
short enough to neglect the intraband interaction be-
tween carriers. The question arises whether disorder,
which renders the classification of states in terms of k
vectors meaningless, leads to a decay of the photon echo
or diffraction signal even if quasiparticle interactions can
be neglected, which would correspond to an infinitely
long dephasing time in the case of a crystalline semicon-
ductor. The problem can be formulated slightly
differently starting from a tight-binding description:
Does a quantum mechanical coupling between two-level
systems result in a decay of the coherence of the optical-
ly created excitations?

Root and Skinner have calculated the photon echo
signal in the so-called tz/2-tz pulse configuration and con-
sidered excitons as excitation. The internal motion of
the exciton has been assumed to be not affected by disor-
der. The Hamiltonian then is formally equivalent to the
case of a single-band Anderson model. They found
from a perturbative treatment (strong disorder, localized
regime) and for intermediate times z that for the partic-
ular case of short-range correlated disorder a nonzero
coupling between sites, represented by J, indeed results
in a finite dephasing rate Tq ' =24fJ /W. The disorder
is characterized by a width 8'of the site energy distribu-
tion and f is the fractional occupancy of the absorbers in
the host lattice. Hegarty and Sturge, on the other
hand, argue that elastic scattering transfers a nonzero k
to the optically excited excitons, which can then no
longer couple to the external photon field and thus lead
to a decay of the nonlinear polarization.

In this work we investigate the role of elastic disorder
scattering in optical-dephasing experiments. We do not
employ a perturbational approach with respect to disor-
der, characterized by ti =S'/J. In particular, we demon-
strate for the first time that in contrast to the linear
response the nonlinear response is strongly influenced by
Anderson localization. The present theory is applicable
to semiconductors with either strong static disorder like
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a-Si:H or with small disorder like mixed crystals, quan-
turn wells, and superlattices. It correctly describes both
limiting cases, g 0 and g ~, where no dephasing
occurs. In addition our approach allows for a calculation
of (P(2z)) for arbitrary r A. result analogous to that of
Root and Skinner, however, in the delocalized regime, is
found for the envelope to the decay curve. We estimate
the decay time T2 to be of the order of some 10 fs if,
e.g. , typical parameters for hydrogenated amorphous sil-
icon" are used. Our results clearly demonstrate that
dephasing experiments do not necessarily provide infor-
mation about the interaction of excitations with quasi-
particles, but, instead, the static disorder has to be taken
into account as a cause of decay.

In order to emphasize the role of static disorder we do
not consider any interaction between excitations and
quasiparticles. We also neglect the interband electron-
hole coupling and treat the excitations as mutually in-
dependent electron-hole pairs. For a simple tight-
binding model we calculate the polarization to third or-
der in the exciting electric field as a function of pulse
separation r. This treatment predicts the asymmetric
diffraction signals which are often found. The light
pulses are assumed to be of 6(t) shape.

It is instructive to first consider the most simple model
which allows us to study the simultaneous influence of
both static disorder and quantum-mechanical coupling:
an ensemble of dimers. " For a single dimer the Hamil-
tonian describes two coupled two-level absorbers

H g, g e„n„+J,( ,cc,12+ H.c.),

and the polarization operator is taken to be

P =pic, ,;c„+H.c.

For simplicity the polarization operator is again taken to
be given by Eq. (1). The sites i,j are the nodes of a sim-
ple cubic lattice with lattice constant a. The relevant
term for the third-order polarization contains a config-
urational average over four single-particle propagators,

(P(2r))-(Tr(Pe ' Pe ' Pe ' Pe ")& (2)

We consider two simplified models which allow a
treatment in terms of localization theory. First (model
A), we assume that the coupling in the valence band van-
ishes, q, , =~ (i.e., an infinite mass in the crystalline
case). From Eq. (2) we get'

(P(2 )&-p pig( )(1 —6;, )+&;,jp;, ( ),
where

and

g(r) =&exp[ —i(e;,,
—e),, )rj&, i',

p; (r) =(Tr((ci)(ci (e ' (cj)(cj ( )).

state. This leads to a modulated signal for one particular
absorber (the quantum beats' ) and to a decay if the in-
dividual modulation frequencies of the ensemble of ab-
sorbers are distributed. The saturation value for large
pulse separation z is lower the more states are connected
to a particular state by optical transitions.

An ensemble of two-level systems which are connected
by nearest-neighbor interactions can be studied using the
two-band model introduced by Abe and Toyozawa'
which consists of two independent Anderson Hamiltoni-
ans,

r

H= g, ge.;n.;+J.gc.';c,
a =c t i i'

The differences e, l
—e,2 are assumed to be distributed

randomly over a range W with zero mean. The relevant
disorder parameter is g, =W,/J, . If q, =0 we have a
symmetrical dimer with only two transitions connecting
an antisymmetric with a symmetric state. Consequently,
the symmetric dimer can be viewed as two uncoupled
two.-level systems. The total ensemble is then equivalent
to an ensemble of two-level systems which does not show

any dephasing. In the opposite extreme, i.e., for infinite
disorder, rt, ~, we again have an ensemble of in-
dependent two-level systems without dephasing. In the
intermediate case, the polarization is determined by
terms like

expfi[(e„—e ~) +J, 1
't zJ+const,

which implies a decay for an ensemble with fluctuating
energy diA'erences e; —e j.

We find a general result that (P(2r)) decays towards
a saturation value whenever optical transitions connect a
particular initial state with more than just one excited

This latter function is nothing else but a density-density
correlation function for the conduction band, ' while
for uncorrelated site energies g(r) is determined by the
Fourier transform of the valence-band site energy distri-
bution function. As compared to p;;(r) it, therefore, de-
cays on a generally much shorter time scale O', , '. We
can manipulate Eq. (3) using particle conservation,
g~p;~(r) =1, and obtain

(P(2r)) —Np'([I —g(r) f P;;(r) +g(r)l; (4)

i.e., the decay of the nonlinear polarization is directly re-
lated to the decay of the intraband electron density
correlation function. The physical interpretation of this
result is obvious. Our model assumption implies that the
hole is localized at a particular site while the electron is
able to move around. This propagation can be described
in terms of the mean square displacement (R (r)) which
is given by

(R (r)) =(1/N)gR; p; (r),
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where R;i is the separation of sites i and j. A mode-
coupling treatment ' of p;i(z) reveals all the known re-
sults related to the Anderson localization. In particular,
in the localized regime (rl, ) q«„1), (R (r))~ (10, for

~, where gi„ is the localization length. We also
find that p;;(r) approaches the finite long-time limit

(5)

1.0

B A
Xc=o Xv=~

Xv=o Xc=~

". . y„=0

By,=0

Here G;;(E) is the diagonal element of a single-particle
lattice Green's function at energy E, related to the or-
dered Hamiltonian —,

' g;ic;tcj, (with a band for —1 & E
& 1). For weak localization, gi„~, Eq. (5) leads to
p;;(r) 0 while for vanishing localization length (un-
coupled two-level absorbers) p;; =1, i.e., no dephasing.
For intermediate cases (P(2r)) initially decays faster the
larger q, ' =J,/W„ in rough agreement with the pertur-
bational result of Root and Skinner for intermediate
times. For large times we find a saturation value roughly
proportional to gl„.

In the delocalized regime at intermediate times we ob-
tain as a rough estimate for the envelope

y;;(r) = exp( 6Dr/a'), —

where D is the dc-diffusion constant given by
D=12J, a (1 —8)/xW, (for a box-shaped distribution
of width W, ). ' 8 is the coupling constant of the Ander-
son localization problem, 8 =(tl, /g„„.t), g„„t=11.8.
Thus the envelope described by Eq. (6) is characterized
by a dephasing rate T2 '=11.5(1 —6)J, /W, which ex-
tends the result of Root and Skinner to the delocalized
regime. The numerical values for p;;(r) are plotted in
Fig. 1 (full line, model A).

Our second model 8 considers an ordered conduction
band, rl, =0 with band structure el, . Equation (2) can
then be expressed in k space and the self-consistent
mode-coupling approach of Gotze' and Prelovsek' is
applied to calculate the intraband correlation function
pl, q (r) for the valence band,

Qgj( (r) =(Tr(
I Uk)(Uk I e "'

I
Uk')(Uk'

I )),
while Eq. (3) is replaced by

(P(2r)) =p "gpl, l, (r) exp[ —i (Eg' El, ) r]
kk'

and Eq. (4) by

(P(2r)) —Np [[1—e(r)]Jo(2J r)+P(r)] .

Here e(r) is the valence-band current-current correla-
tion function, related to the conductivity. The case
g, , ~ ~ (J,. 0, i.e., +=0) is given simply in terms of
the Bessel function Jp(x). It coincides with model A for
the special case g, =0. For finite q, , the correlation
function peal, (or +) can be calculated numerically on the
basis of the approach of Gotze ' and Prelovsk. ' The re-
sult is also plotted in Fig. 1. For a perfectly ordered sys-
tem, g, , =0, the current does not decay, +(r) =1, and we

0.0- P
~ ~ ~ ~

0
OO 4

FIG. 1. Sequence of decay curves of the normalized non-
linear polarization. Model 2 (solid line); model 8 (dotted
line). The dashed-dotted line applies for both models.
J, = —2J,, in model B.

have no dephasing.
Equations (4) and (8) express the central result of this

Letter. They show that in contrast to the optical linear
response ' the nonlinear response is drastically
influenced by disorder effects. For a particular model
system we have demonstrated that static disorder alone
can lead to a decay of the third-order polarization
(P(2r)) with increasing pulse separation r. Our treat-
ment predicts no dephasing in the two limiting cases of a
perfectly ordered and a perfectly disordered ensemble.
For a strongly localized valence band and for moderate
disorder in the conduction band, the nonlinear polariza-
tion (P(2z)) decays to zero with a dephasing rate rough-
ly proportional to the diffusion constant D for electrons.
In the localized regime for the conduction band the sig-
nal reaches a saturation limit which is roughly propor-
tional to the inverse square of the localization length gi„.
On the other hand, if one of the bands is completely or-
dered, disorder in the second band leads to a decay of
(P(2r)), which is related to current relaxation.

It is evident that the experimental verification of the
effects of disorder in nonlinear optics is difficult because
of a number of unavoidable quasiparticle interactions.
In particular, in weakly disordered semiconductors the
dephasing rate due to excitation-excitation and excita-
tion-phonon interactions may lead to decay rates [of
the order of (10 fs) '] comparable to or even larger
than those considered here. On the other hand, in more
heavily disordered semiconductors these interactions may
well be sufficiently suppressed and the disorder-induced
dephasing will contribute considerably to the experimen-
tal signal. As an application we consider interband tran-
sitions excited with a typical photon energy of about 2
eV in amorphous silicon. The majority of excited elec-
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trons will be delocalized. As an estimate we use Eq. (6)
and take D 10 2 cm /s ' and a 5 A. ' This leads to
a short decay time constant of Ti =160 fs which may
dominate the experimentally found decay. Extremely
long decay times due to disorder are predicted if the op-
tical excitation couples only localized states. This situa-
tion may be realized in mixed crystals like, e.g. ,
CdSi —„Se„orin quantum well systems with composi-
tional or structural disorder.

We have benefitted from discussions with E. O. Gobel
and G. Noll. This work has been supported by the
Deutsche Forschungsgemeinschaft.
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