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Finite-Temperature Defect Properties from Free-Energy Minimization
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We present two simple, but accurate, techniques for calculating the finite-temperature atomic struc-
ture and free energy of any solid defect (point or extended). The finite-temperature equilibrium atomic
structure and thermodynamic properties of defects in solids are obtained self-consistently by minimizing
the free energy of the solid with respect to the coordinates of the atoms. Application of the two methods
to a perfect crystal and one with a vacancy show that both methods yield excellent agreement with
Monte Carlo calculations for temperatures up to at least 75% of the melting point.

PACS numbers: 65.50.+m, 61.45.+s, 61.70.—r, 64.10.+h

Defects in solids (e.g., internal interfaces, dislocations,
vacancies, etc.) are known to play crucial roles in a wide
variety of material phenomena. Unfortunately, our un-
derstanding of defects in solids is far from complete.
The present Letter outlines two new methods for self-
consistently determining the atomic structure and ther-
modynamic properties of defects (point, line, plane) in
solids at finite temperature. At the heart of both
methods is a local harmonic (Einstein-like) approxima-
tion to the free energy of the solid which depends on the
local atomic configuration. Since the free energy is
determined in terms of the local atomic coordinates, a
minimization of the free energy with respect to atomic
coordinates yields both the equilibrium structure and
free energy of the solid and the defects contained
therein. These methods are compatible with a wide
variety of methods for describing atomic interactions
(e.g., pair, embedded atom,' three-body potentials) and
require computational resources comparable to 7 =0
determinations of the equilibrium atomic structure.

The theoretical study of the thermodynamic properties
of perfect crystals is well developed. A number of ap-
proaches have been taken, including lattice dynamics in
the harmonic and quasiharmonic approximations,? self-
consistent phonon theory,? and classical molecular dy-
namics (MD) and Monte Carlo (MC) computer simula-
tions.* These methods are all, in principle, very accurate
and give calculated properties of perfect crystals in good
agreement with experiment. An advantage to the
phonon-based methods is that the Helmholtz free energy
is easily determined, while the free energy is difficult to
determine using MD or MC.> Recently, Jacucci and
co-workers® used quasiharmonic lattice theory to calcu-
late the free energy of vacancies; however, the structure
of the vacancy was not consistently determined. For
more complicated defects, such as grain boundaries, pri-
marily MD simulations’ have been used at finite temper-
atures, though a recent application of statistical-
mechanical density-functional theory has been made to
dislocation structures.® In a spirit similar to the present
work, Sutton® has had some success in calculating the

free energy of defects using moment expansions of the vi-
brational density of states. The approaches we present in
this paper, which are based on a cell (local harmonic)
model'° description of the atomic vibrations, may be ap-
plied to arbitrary defects and have the advantages of
both conceptual simplicity and computational efficiency.

To reasonable accuracy, the motion of an atom in a
solid is harmonic. We simplify the harmonic approxima-
tion further by neglecting all terms that couple vibra-
tions of different atoms. The Helmholtz free energy, Ao,
is thus given by
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where N is the number of atoms, kgT is the thermal en-
ergy, u;; is the interatomic potential, r? is the position
about which particle i vibrates, r,-j=|r,9--r,°l, and wpg;
are the three vibrational frequencies of atom i. In the
Einstein model all frequencies are set equal to the Ein-
stein frequency, wo, which is often determined by fits to
experimental data. (Note that while we assume that the
atomic interactions are described by pair potentials in
this Letter, the generalization to other types of potentials
is straightforward.)

We have taken a different approach, which we call the
local harmonic (LH) model. For a given perfect crystal
structure at a volume V and temperature 7, one can
determine wg by diagonalizing the local dynamical ma-
trix for each independent atom in the unit cell. These lo-
cal frequencies, inserted into Eq. (1), yield the
Helmholtz free energy, from which all other thermo-
dynamic quantities are determined. In the classical lim-
it, Eq. (1) can be simplified to
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where D; =[w;w>w3;1% is the determinant of the local
dynamical matrix of particle i. As demonstrated below,
this very simple model yields accurate free energies and
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equations of state. Application to imperfect systems,
such as solids with vacancies or grain boundaries, is
straightforward, since all of the variables in Eq. (2) are
completely specified by the interatomic potential and the
local atomic configurations. We note that by neglecting
the coupling of vibrations of different atoms, the free en-
ergy of a configuration of N atoms is simplified to the
calculation of the determinants of NV (3x3) matrices.
The equilibrium atomic structure and corresponding
thermodynamic properties are determined by minimizing
the free energy at any temperature with respect to the
atomic coordinates.

If we restrict the frequencies in Eq. (1) to a local Ein-
stein model, with only one frequency per independent
atom, the potential energy can be written classically (as-
suming pairwise interactions) as
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harmonic force constant associated with atom i. An
atom vibrating in such a harmonic potential has a spheri-
cally symmetric Gaussian atomic density profile. Our
second approximate technique, the variational Gaussian
(VG) method, is a variational theory that takes advan-
tage of these Gaussian distributions. From the Gibbs-
Bogoliubov inequality,'' the free energy of a system is
constrained such that 4 < A4q+{(U — Uy, where () in-
dicates that the average is performed over the harmonic
reference system [Eq. (3)] and U is the total potential
energy of the system of interest. Thus Ao+(U — Uy is
a rigorous upper bound to the true free energy of the sys-
tem. A takes on the simple form
2
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where a; =k;/2kgT, A is the thermal DeBroglie wave-
length, and w;; is the interaction between atoms at sites i
and j whose distributions have been broadened into
Gaussians by their vibrational motion,
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The variational Gaussian potential, w;;, is determined |
one time for each form of pair potential, u;;, by evaluat-
ing the integrals over the highly peaked Gaussian distri-
butions. For an exponential potential exp(— yri;), wi;
takes on the simple form

wij =1 —y0/rDexp(— yr)+y%6/2),

where 0=(1/a;+1/a;)/2, with additional correction
terms that are negligible for the narrow Gaussian distri-
butions found in solids.

In the VG method calculation of the free energy is
then just a sum of temperature-dependent effective pair
potentials which are only slightly more complicated than
the original pair potentials themselves. The equilibrium
value of the free energy can then be determined for an
atomic system at arbitrary volume and temperature by
minimizing the expression on the right-hand side of Eq.
(4) with respect to the mean atomic positions r{ and the
local Gaussian widths a;.

The potential in Eq. (3) also serves as the reference
system in the method suggested by Frenkel and Ladd’®
for calculating free energies of solids with computer
simulations. In principle, the free energies determined
with their method are exact, subject only to numerical
uncertainties, but it necessitates a fairly large number of
simulations (of order 10) for each V,T state point.

We tested the LH and VG methods on a simple model
for Cu, using a pairwise Morse potential truncated be-
tween the second and third nearest neighbors,

u;j =Dofexp[—2B(r —r)] —2expl—BGr—ro)l},
with Dy=0.3429 eV, p=1.3588 A~ and rg=2.866 A.

We note that since this is a very approximate description
of the interactions in Cu, we do not compare with experi-
ment but rather to accurate MC calculations with the
same potential. The results for the free energy of the
perfect solid at pressures of —3.2, 0, and 80 GPa are
shown in Fig. 1 as a function of temperature. The agree-
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FIG. 1. Calculated free energy vs temperature for a perfect
Cu crystal using a truncated Morse potential. The upper curve
is for a pressure of 80 GPa, the middle curve for —3.2 GPa,
and the lower curve for zero pressure. The values for the
—3.2-GPa results have been shifted by +0.5 eV to separate
them from the zero-pressure results. The solid curves are from
the local harmonic model, the dashed curves from the varia-
tional Gaussian method, and the circles from the Frenkel-Ladd
Monte Carlo procedure. We note that the MC results require
ten full length simulations per point. The estimated errors in
the MC calculations are smaller than the symbol size.
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FIG. 2. Calculated volume per atom for a perfect Cu crystal
using a Morse potential truncated at the second-nearest neigh-
bors. The upper curve is for a pressure of —3.2 GPa, the mid-
dle curve at zero pressure, and the lower curve at 80 GPa. The
values for the 80-GPa results have been shifted up by 4
A3/atom to compress the scale. The line and symbol types are
the same as for Fig. 1.

ment between both the LH and VG methods and our
nominally exact Frenkel-Ladd MC results are excellent,
with the VG method giving a slightly larger error at
P =0 and better results at both higher and lower pres-
sures. The thermal expansion of this model of Cu is
shown in Fig. 2, where we plot the volume versus tem-
perature at the same three pressures. Once again, the
agreement between all three methods is excellent, espe-
cially at high pressures, where the results are nearly in-
distinguishable. The frequencies calculated from the a;
parameter in the variational Gaussian method are within
a few percent of those calculated with the local harmonic
model over the range of temperatures and pressures
studied. At zero pressure, for instance, the VG frequen-
cies are larger by about 1.5% at 250 K and 6% at 1000
K.

Application of traditional lattice dynamics methods to
systems with defects are difficult due to the low symme-
try of the system and the large (3N x3N) matrices that
must be diagonalized. Because our methods depend only
on a local description of the atomic vibrations, calcula-
tions of defects structures and thermodynamics are not
much more challenging than for the perfect system. In
order to test the LH and VG methods on a defect (where
anharmonic effects are more important), we studied a
vacancy in Cu, using the same pair potential as for the
perfect system. We created the vacancy by removing
one of the particles from the 108-particle system used in
the MC calculations for the perfect crystal. In Fig. 3 we
compare the vacancy formation free energy, AA,
=(107/108)A, — A, calculated with the LH, VG, and
Frenkel-Ladd MC methods. A, is the free energy of the
perfect 108-particle system and A, is the free energy of a
107-particle system at the same total volume. The
agreement between the approximate methods and the
more accurate MC results is not as good for this system
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FIG. 3. Vacancy formation free energy for one atom re-
moved from a 108-particle system (periodic boundary condi-
tions), A4, =(107/108) A, — A., where A, is the free energy of
a perfect 108-particle system and A. is the free energy of the
107-particle system with a vacancy at the same volume. The
solid curves are from the local harmonic model, the dashed
curves from the variational Gaussian method, and the circles
from the Frenkel-Ladd Monte Carlo procedure. The estimated
errors in the MC results are smaller than the symbol size.

as for the perfect system. The errors range from O to
2.5% and O to 1.2% for the variational Gaussian model
and the local harmonic model, respectively, as the tem-
perature is increased from 0 to 960 K, which is approxi-
mately 75% of the melting point of this model for Cu.
This increased error may be due in part to the increased
anharmonicity of the lattice around the vacancy. How-
ever, the disagreement is somewhat misleading in that
AA, is defined as the difference between two relatively
large numbers, and so any errors are greatly magnified.
Indeed, the calculated free energies for the full 107-
particle system are within about 0.15% with the LH
model and about twice that with the VG model of the ac-
curate MC determinations at P =0.

For the atoms nearest to the vacancy, the LH model
yields three vibrational frequencies, with a spread of
about *10% relative to their geometric mean. This
mean is about 0.5% less than the perfect-crystal value.
The frequency derived from the a parameter in the VG
method is reduced by about 4% relative to the perfect
crystal. We note, however, that fixing the Gaussian
widths of every atom in the VG model to their perfect-
crystal value increases the vacancy free energy by only
0.01 eV. Comparison of atomic structure of the atoms
around the defect shows excellent agreement between
our two methods. For instance at 960 K, the distance
between the center of the vacancy and its nearest-
neighbor shell of atoms decreases by about 0.019 and
0.021 A in the LH and VG calculations, respectively,
relative to the perfect crystal. We note that the MC va-
cancy simulation results required approximately a factor
of 200 more computer time to obtain than did either the
VG or LH model computations. This large computa-
tional advantage enjoyed by the LH and VG methods in-
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creases dramatically with increasing complexity of the
defect studied (e.g., tens of thousands of atoms are re-
quired to study a low-angle grain boundary).

In summary, we have developed two approaches for
self-consistently calculating the atomic structure and
free energy of defects in solids at finite temperature.
Both of these techniques are based upon minimizing the
free energy with respect to atomic positions. Since the
resultant simulations are simply minimizations, atomic
structures and all thermodynamic properties are as sim-
ple and as fast to calculate at arbitrary temperature as
T =0 defect relaxations. While the LH and VG
methods have been applied to the relatively simple cases
of perfect crystals and vacancies, these methods are
equally applicable to more complicated defects. Current
work is focusing on the application of the LH and VG
methods to grain boundaries with nonpair potentials
(e.g., the embedded atom method'). At this time, we do
not know whether one method or the other will be more
useful. However, either approach is very much more
efficient than any competing method for calculating free
energies of solids, including the recent statistical-
mechanical density-functional methods. %2
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