VOLUME 63, NUMBER 6

PHYSICAL REVIEW LETTERS

7 AUGUST 1989

Strong CP Violation and the Neutron Electric Dipole Moment

Jiang Liu
Randall Laboratory of Physics, University of Michigan, Ann Arbor, Michigan 48109

C. Q. Geng and John N. Ng

TRIUMF Theory Group, 4004 Wesbrook Mall, Vancouver, British Columbia, Canada V6T 2A3
(Received 22 March 1989)

We derive an identity that relates the fermion electric dipole moment from weak CP-violation effects
to the strong CP parameter 0. In the absence of Peccei-Quinn-type symmetries, we find that requiring 6
naturally small generally implies that, for a large class of models, the dominant contribution to the neu-
tron electric dipole moment d, comes from strong CP violation rather than directly from weak CP-

violation effects.
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In the twenty-five years since the discovery of CP
violation' little progress has been made in determining
where this violation arises in the elementary-particle in-
teractions.? The violation of CP invariance has been ob-
served in three decays of the K; meson and, possibly, in
the K°— nr decay,® and nowhere else.® In order to
determine the source of CP violation and hence distin-
guish between different theoretical models, it is necessary
to have additional experimental information. Among the
various possibilities, the possibility of detecting CP viola-
tion by measuring the neutron electric dipole moment d,
has long been of special interest.>

Model predictions® on d, are essentially arbitrary.
This arises because a nonzero value of d, could always
be blamed on the “strong CP violation.” " Hence, for the
class of models in which a small strong CP parameter 6
is realized by means of fine tuning, the neutron electric
dipole moment is fundamentally incalculable. Thus, in
general, a nonzero value of d, actually cannot be unam-
biguously related to weak CP violation. The most famil-
jar example is the Kobayashi-Maskawa (KM) model.?
Although weak-interaction effects appear to give a very
small contribution® to d,, one practically has no con-
trol'® on the size of 6. As a result, in the KM model the
value of d, induced by the strong CP parameter 6 is
essentially arbitrary.

Clearly, in order to be able to predict d,, we must first
consider how to solve the strong CP problem. The best
known solution is found by introducing Peccei-Quinn-
type symmetries,'! which make € a small but calculable
parameter. However, by doing so either the theory has
to have an axion, which is still yet to be borne out by ex-
periments,’ or we have to make at least one of the light
quarks massless which, on the other hand, may not be
compatible with the present view of chiral symmetry of
hadrons.!'> One possibility is to make the axion very
light and weakly coupled to elude experimental detection
by adding a Higgs-singlet field.!> Another one is to re-
quire that the theory violates CP symmetry either spon-
taneously or through soft breaking terms. We would like

to show in this Letter that for the latter class of mod-
els,'*"'7 the dominant contribution to d, generally'®
comes from the radiatively induced strong CP 0 parame-
ter rather than directly from weak CP-violation effects.
We begin by considering the effective 8 parameter
which characterizes the strength of strong CP violation,

0=0qcp+ ArgDet(M, M )

Det(M, M)
Det(M/M])

Here Oqcp comes from a term (8qcp/6472)TrGG in the
QCD Lagrangian. M, () is the up- (down-) quark mass
matrix. Requiring that CP be violated only spontaneous-
ly or through soft breaking terms amounts to setting
6qcp=0. In this case, it is convenient to represent the
last term in Eq. (1) by a parameter 6y ..'® In doing so,
we have explicitly chosen a basis in which the quark
mass matrices are diagonal and positive definite,

M,— D,, with (Dg);;=m}5;, mi>0, )

-BQCD+iln (1)

where g represents up and down quarks. Clearly, at
higher loop levels, D, will receive radiative corrections,
D,— Dy, but if all the corrections are real, they will
only contribute to the renormalizations of quark mass
and mixing but not to 6. Thus in the basis in which
D; remains diagonal and positive definite, 6 is un-
changed.

Now, suppose at some loop level nonzero complex
values of corrections to D, first show up,

D;— D;+6my . 3)

Here 6my, is the radiative correction to the diagonalized
quark mass matrices Dg. In general, ém, is not diago-
nal. For the consideration of d,, only the imaginary part
of ém, will be relevant. We will therefore assume that
émy is much smaller than the diagonalized matrices D;.
Now, using the identities

Det(D,+6m,)=DetD,)) L. O +D,7 ' 6m, i)+ - - -,
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Theoretical models that realize the conditions in Eq. (5)

FIG. 1. The effective gy vertex where (a) and (b) are the in a natural way are discussed in Refs. 14-17. In prac-
one-particle irreducible and reducible parts, respectively. tice, if .0 one finds that the radiative correction
terms are usually much smaller than 6. Among the
and various relations in Eq. (5) of special interest are those
In(0+D,7'6my ;i) =D,7'6my, i+ - - -, that relate the 6 parameter to the first-generation quark

masses,

the ellipses representing terms with higher powers of I
: m(ém,) Im(my)
8my,, we find to the leading order of 5m, <o, < <9, 6)
my my

0=0pcc+ Y Im(5r'nu i + Im(&'nd)” ) ) where m, and m, represent, respectively, the u- and d-
; (D,); (Dg); quark masses. Of course relations given by Egs. (5) and

(6) are valid only if there are no Peccei-Quinn-type sym-
metries. Had we introduced such symmetries, the con-
tribution to 6 from Eq. (5) would have been eliminated
by a trivial rotation, and it would be unnecessary to re-
quire that each term in Eq. (5) be small.

Now we explore the consequences of Eq. (6). First,
we realize that in the basis where the quark mass ma-
trices D, are diagonal and positive definite, there is a re-

Hence, we see that to this order only the imaginary part
of the diagonal elements of dm, enters into the expres-
sion of 6. This justifies our earlier assumption on the
size of dm, and shows that perturbation expansion in
powers of dmy is indeed valid as far as computing the 6
parameter is concerned. When M, is Hermitian,
Oire =0 and thus only the last term in Eq. (4) survives.

For this special case, our formula reduces explicitly to a - L
form given by Bég and co-workers. '* lation between Im(6mq) and the quark electric dipole

Experimental limits on the size of d, have yielded’ moment d. 'Inde‘ed, for every effective gqy coElpling
9=<10"°-10"'% Now we ask the following: How can graph shown in Fig. 1 that generates a contribution to
. - : d,, there will be a corresponding diagram illustrated in

Fig. 2 contributing to Im(6m,) and hence to 6 from Eq.
(4). The contributions of the effective gqy vertex can be
separated into one-particle irreducible (1PI) and reduc-
ible diagrams as depicted in Figs. 1(a) and 1(b), respec-
tively. One finds?° that only the 1PI vertex of Fig. 1(a)
contributes to the quark electric dipole moment d, term

we make 6O sufficiently small? One possibility is, of
course, to introduce arbitrary fine tunings so that the
smallness of the 0 parameter arises because of a com-
plete cancellation among the different terms in Eq. (4).
This possibility, while viable in principle, cannot, howev-
er, answer the original question of naturalness which is
the center of the strong CP problem. In what follows we

will, therefore, not discuss this possibility any further. via
Alternatively, we may assume that the reason that 6 is gp+Rifpk o,k ysq(p) , @
small is because every term in Eq. (4) is small where d, =f5(0). From the Gordon decomposition rela-
Im(ém ii tion
Oiree = 6, _((Dq'—)i)-so (i=1,23..). ) Gp+Kk)o,k*ysq(p)=glp+k)Q2p+k),ysq(p), (8)
I we have
Ggp+K)ifp(k o,k ysq(p) =g(p+k)ifp(kHQ2p+k),ysq(p) . 9)

To relate the right-hand side of Eq. (9) to the parameter 6 we use the Ward-Takahashi identity?!
rii(p+k) =qu%Dq @) +ok), (10)
P

where I'J is the effective ggy vertex of Fig. 1(a) and @, is the charge of the quark. Putting Egs. (3), (9), and (10) to-
gether one obtains that

Gp+k) quF}u—Imlémq(p)]ys+0(k) () =G +K) fo (k) 2p+K),75q(p) an
which immediately gives an identity
fp(0) Ipz..qu=qu$Im[6mq (] e (12)
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by taking all the k-dependence terms to zero. As a
consequence, for arbitrary myg,, we can relate d; to
Im(8m,) as follows: 2

Im(6my)
A2
where d,¢2k represents the contribution to d, directly
from weak CP-violation effects, and A is a parameter
with the dimension of mass. Strictly speaking, the first
step of Eq. (13) follows only if long-distance contribu-
tions to d, are negligible. Although this is an assump-
tion we will make, for the class of models discussed in

Refs. 14-17 this turns out to be the case.?’

It is important to realize from Eq. (12) that in the
limit Im(8m,) =0 for arbitrary my,,*? contributions to
d)*** at that level must vanish as well. One interesting
implication of this observation can be summarized as fol-
lows: Theoretical realistic models which have a contri-
bution to d, at, say, the nth-loop level must also generate
a contribution to 6 at the same loop.?>?* For example,
in the standard KM model, since there is no contribution
to 6 up to two-loop levels for any my,, 12 one concludes
from Eq. (12) that d,(two-loop) =0 which agrees with
the explicit calculations of the two-loop diagrams done
by Shabalin.’

Now, using the constraint on Im(ém,) from Eq. (6),
we have from Eq. (13)

dye—d, ~eQ, , (13)

wes emy

it ~o—r. (14)
On the other hand, the contribution to d, through the
strong CP parameter 6, denoted by d;'"™"8 hereafter, is of

the order’

;"8 ~10 799 e cm ~ 9 —— . 15
ecm~0 15)
Comparing Eq. (14) with Eq. (15) we then see
2 2
dyess M M
~0|—4 Y1~ |2 ae)
d;lrong MW A A

To have a feel on the order-of-magnitude estimate of our
result we take 6~10 "% as an example so that djo"e
(~10 "% ecm) saturates the present experimental lim-
its. Assuming

A= My 17)

we find from Eq. (14), d¥** <10 "2 ecm. Thus, if A is
not too much smaller than My, it is actually strong CP
violation that provides the dominant contribution to d,.
A detailed calculation shows, in fact, that all the existing
theoretical models'4!7 which have solved the strong CP
problem without Peccei-Quinn-type symmetries turn out
to have this interesting feature.?3

Evidently, for different models, A takes a different
form. The graph that contributes to d; differs from that
to Im(6m,) by an additional external photon coupling

and, therefore, contains also one additional internal
propagator; we then expect that the order of magnitude
of A is roughly of the order of the largest energy scale of
that loop (or subloop). Therefore, the assumption in Eq.
(17) is valid only if the corresponding highest energy
scale of these loops or subloops is not much smaller than
My. Indeed, this turns out to be the case in the class of
models discussed in Refs. 14-17.

However, it is conceivable to have such models that
have A<My . This may happen, for instance, if a sub-
loop diagram to which the external photon couples con-
tains only the light quark and/or gluon, photon internal
lines. In that case A~m, <My, and as a result d,"*
could be of the same order of magnitude as or even
bigger than d;'™"8 Fortunately, models of this sort are
difficult to construct. In fact, to have this sort of dia-
gram also violate CP, we may have to consider three or
higher loops. Although we are not aware of any such
models, the possibility of having A<My can be illus-
trated, for instance, by “calculating” 6 and d,"°* in the
KM model.?® It was shown explicitly by Khriplovich?®
that the first nonzero loop contributions to 6 and dyveak
arise from three-loop diagrams with A~m; and as a re-
sult d,yeak/dsirone = 1,
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