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Comment on "Vortex-Pair Excitation near the Su-
perconducting Transition of Bi2Sr2CaCu208 Crys-
tals"

Recently Martin et al. ' found that the in-plane resis-
tivity p,b(T, H) of a BiqSr2CaCuqOs superconducting
crystal behaves consistently with the Kosterlitz- Thouless
(KT) theory, both above and below an experimentally
determined KT transition temperature Tt, [where

p,b(T ( Tt, ) was determined via 8(lnp)/8(lnH)]. This
complements previous results of Stamp et al. on YBa-
CuO crystals [where p, t, (T & Tk )-ptv (I/Io) "' ' in zero
geld, H=O], suggesting that all the quasi-2D high-T,
systems may have KT transitions to superconductivity.

Now Martin eE al. ' assume a conventional fluxon-
pairing KT transition, as occurs in thin superconducting
films of effective thickness g& «X,b, the in-plane
penetration depth. They then argue that the ratio K&/K
of the interplane (between adjacent planes) to in-plane
coupling between fluxons is very small. They estimate it
to be roughly the conductivity ratio p, /p, b (—10 for
the Bi systein, and —10 for YBaCuO). Then KT
scaling would persist until the mean-field fluxon separa-
tion r;~ —k, b or ro [where X,b =X,b/g~, an«o =&,t (K/
K~) 'l2], whichever is the smallest.

However, this argument is incorrect. In systems with
short-range interplane interactions, the crossover from
KT scaling to 3D behavior occurs for a mean soliton
separation r;~ —ro. But in any layered system with a
long range inte-rplane coupling (in particular, where any
unscreened gauge field couples to solitons in the planes),
K~(r~)/K(r~) —O(1). Then KT scaling cannot start—it immediately crosses over to 3D behavior. Suppose,
e.g. , the solitons are 2D Auxons, moving on a set of
N=2M+1 coplanar superconducting sheets of effective
thickness g&, spaced regularly at z = vD (v =0, ~ 1,
. . . , ~ M), and with no direct interaction between the
planes. Fluxons are described by source terms &„(r)
= ~ (zxr)(tlto/2trr) in the vth plane (where po is the
flux quantum), generating a supercurrent j,(r)

[%,(r) —A(r, vD)l/@ok, ,b with the fiuxons coupling to
the electromagnetic gauge potential A(r, z). We then
have approximately that

X,bV A(r, z) — g 8(z —vD)[A(r, z) —+,(r)l =0, (1)

which can be solved analytically using Fourier trans-
forms. We then find the following: (i) For r;~ less than
a separation L(v, D/g&, X,b/ND),

K~(r i ) — cl; CI& (po/8tr

Rgb�
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~

I';&/gab (

and K(r7 ) = —K & (r~ ) (with unimportant corrections);
q =+ is the Auxon polarity. Loosely speaking, Aux

from one fluxon can just as easily thread another Auxon
in an adjacent plane as one in the same plane. Equation
(1) is exact for D)&g&, and Ng~)&k, b. (ii) The "upper

cutoff" function L(v, D/r~, k,b/ND) is complicated, but
usually less than A,,b [and as D t,"&, as in the real sys-
tem, L falls rapidly; even a small Josephson overlap be-
tween planes will then convert the fluxon interaction to
the usual 3D form —exp[ —(r;~/X, b) ]j. For r;~ )L. , the
interaction is no longer logarithmic, and KT scaling
breaks down. Note, however, that for thin samples
(Ng~ ~ X,b) the cutoff L crosses over again to the
single-plane limit L —A,,b, i.e., for a sample thickness
—0.5 pm in these systems.

So then, how may we explain the results of Refs. 1 and
2? There seem to be two ways: (a) The solitons are not
fluxons. For example, a KT transition may occur
amongst holes bound to logarithmically interacting mag-
netic solitons, and detailed models of this can be
developed. However, any soliton pairing mechanism
satisfying the criteria specified in Ref. 2 will do. (b)
Equation (2) implies that fiuxons will link between
planes to form (rather fioppy) vortex lines. For line sep-
arations & L and a very thin crystal these may be rough-
ly modeled as a set of logarithmically interacting rods
oriented parallel to z, which could exhibit KT scaling.
Note that the crystal of Martin et al. ' was only 2 pm
thick, so this is a possible explanation of their results. In
the much thicker sample of Ref. 2 the KT scaling func-
tion n(T) =1+trK(T) behaved quite differently from
that of Ref. 1 thereby excluding this alternative. One
might also try arguing for a "flux creep" explanation
for Ref. 1; again, such an explanation would not apply to
the zero-field experiments of Ref. 2.

Note added. —Yeh and Tsuei have recently published
results which further sharpen the paradox described
here.
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