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Rotational Magnetic State in Deformed Metal Clusters
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A magnetic state of orbital nature is predicted in deformed metal clusters. The restoring force of this
state originates from a quantum effect associated with the kinetic Fermi motion. For Na clusters the
frequency is predicted to be co~i =64.6N ' ' eV, where 6 is the deformation of the cluster.

PACS numbers: 71.45.—d, 36.40.+d

Collective electric dipole excitations have been recent-
ly observed in alkali-metal clusters. ' These excitations
correspond to the classical Mie surface-plasmon oscilla-
tions and have revealed the importance of deformation
effects. In this Letter we suggest the existence of a new
magnetic collective state in deformed clusters occurring
at energies much smaller than the plasma frequency.
Such an excitation has no classical counterpart and
emerges from the quantum effect associated with the
Fermi motion of valence electrons. A collective excita-
tion of similar nature has been recently observed in de-
formed atomic nuclei via inelastic electron scattering as
well as (y, y') reactions.

A macroscopic illustration of the new magnetic state is
suggested by the following form for the displacement
field relative to the electronic motion:

Q =M XX+ 6
1+8/3

V(yz) .

In Eq. (1) ro is the unit vector in the x direction (the
cluster is assumed to be axially deformed along the z
direction) and 6= —', (R, —R~)/(R, +2R~) is the defor-
mation of the electron density profile which is assumed
to be of spheroidal shape: p, =p, (x /R +y /R~+z /
R. ) (R, and R„=RJ are the radii parallel and perpen-
dicular to the symmetry axis, respectively).

The term rex r of Eq. (1) corresponds to a rigid rota-
tion of the electrons with respect to the jellium back-
ground [scissor mode; see Fig. 1(a)]. If only this term
were included in the electronic motion, the electrons
would experience a restoring force originating from the
Coulomb interaction with the jellium, similarly to what
happens in the dipole Mie oscillation. The cost in the
Coulomb energy is minimized by including the quadru-
pole term in V(yz) in the displacement field. This is well
understood by noting that the change in the electron
density p„

The relevant restoring force taking place during the
motion goes not originate from the Coulomb interaction.
Rather it is produced by the quadrupole component
V(yz) of the velocity field which gives rise to a distortion
of the Fermi sphere of the valence electrons. This effect
of quantum nature has been extensively studied in the
case of atomic nuclei and reveals an elastic behavior ex-
hibited by Fermi systems.

The frequency of the resulting mode can be esti-
mated through the expression AM ~

= (IC/0) ', where
E =2E(u) is fixed by the energy change E(u) associated
with the displacement field (1), and —,

' 0= —,
'

mpo fdVu
is the collective mass parameter. In the limit of small
deformations we find (A =c =1)

4eF

m~s

' 1/2

(3)

The Fermi energy eF entering Eq. (3) originates from
the elastic behavior associated with the distortions of the
Fermi surface discussed above. In fact, the shear contri-
bution to the energy of an elastic medium is given by

E(u) = —,
'

p dV Q (Vku(+VI up )
~,(

and the Lame elastic constant p is related to the Fermi
energy by p = —', ezpo, where po=3/4~r, is the electron-

6p, =v (up, ), (2) (a) (b)
is zero with choice (1) since u. Vp, =0 in the spheroidal
model. The resulting motion is illustrated in Fig. 1(b)
where we have taken a sharp density profile. In this case
one gets a rotation within a spheroid with a rigid surface.

FIG. l. Displacement field for the M I low-lying rotational
state; (a) corresponds to a rigid rotation (scissor mode) of the
electrons with respect to the jellium background and (b) corre-
sponds to a rotation within a rigid surface.
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ic density. To derive Eq. (3) we have used the approxi-
mation (r ) = —', r, N ~ . Differently from the plasma fre-
quency, the energy (3) exhibits a N '~ dependence. It
is worth noting also that for light clusters this frequency
lies much below the Mie dipole mode coM;, =co~/J3,
where co~ =(3e /mr, ) '~ is the plasma frequency. For
example, for Na clusters (r, =4 a.u. , eF =3.1 eV) we
find

coM)(Na) =b4.6N '~ eV, (4)

g(~ I ) 2 g 2 P( 2) 1/2N4 (5)

where ps =e/2m is the Bohr magneton. For Na clusters
Eq. (5) yields

whereas the Mie frequency occurs at coM;, =3.4 eV.
The collective state (3) carries a considerable amount

of orbital magnetic strength which can be evaluated in
terms of the frequency (3) and of the mass parameter 0
through

while the second one comes from the zero-range local-
density approximation interaction accounting for ex-
change and correlation effects (an explicit derivation of
the separable quadrupole-quadrupole force will be
presented in a future work ). Note that the direct
electron-electron Coulomb interaction does not affect the
static Hamiltonian because the resulting static potential
is screened by the jellium background.

Two single-particle levels contribute to the sum of Eq.
(7). They occur at the energies ep=coJ —co, =Scop and
e2 =mJ+co, =2coo and have matrix elements given by

I(0IF I ep) I
=N(r )6/12mcop

and

I &0I F
I e2& I'=N&r'&/6mcop,

respectively. ' Two solutions then emerge from the RPA
equation (7). The highest in energy is the quadrupole
plasmon excitation occurring at

a(mi ) =p'aN4". COpy =(2COp+ 5 CO&) (10)

2
e;1&0 I

F
I e, & I'

2 ~ 2
(7)

where e; and (0
I
F

I e;) are the single-particle excitation
energies and matrix elements that we calculate with the
deformed harmonic-oscillator Hamiltonian

Hp=g ' + —,
' m[coy'(xp+y )+co,'z ], (8)pi

NZ

where co& =cop(l+ —,
' 8') and co, =cop(1 —

—,
' 8). Here the

value of 6 is fixed by the usual minimization procedure.
The RPA coupling constant g associated with the excita-
tion operator F= P;= ~y;z; is given by (in the following,
higher-order eff'ects in 8 will be neglected)

3 mM& 77ZQ)0
2 2

x= +3
5 N(r 2) N(r 2)

The first term (in co~) originates from the direct (long
range) part of the Coulomb electron-electron interaction,

It can be useful to evaluate the ratio between the mag-
netic dipole strength (5) and the electric strength associ-
ated with the Mie dipole frequency. We find

a(~ I ) X. I « I X,=, ~,I," I ~» I'

Z. I
«

I Z,~=i «," I ~ » I'

= ]5 mmlmM;, R (6)

In Eq. (6) only the terms k =x,y contribute to the mag-
netic strength. The value of this ratio turns out to be of
the order of 10

The above results can be also derived using a micro-
scopic calculation based on the random-phase approxi-
mation (RPA) with a separable quadrupole-quadrupole
force. The equation to solve is

8(MI) =2 (0IP~ g l; I co~~)

@82 mcopN(r )6.2

3
(12)

It is easy to show that the state (11),diff'erently from the
quadrupole one [Eq. (10)],has in practice no quadrupole
strength. This follows from the coupling between the ro-
tational and quadrupole motions already discussed in the
macroscopic model [see Eq. (1)]. It is worth noting that
the effect of the RPA correlations is to renormalize not
only the frequency of the high-lying solution (10), but
also the one of the low-lying mode (11), with respect to
the predictions (2cop and Scop, respectively) of the
independent-particle picture.

The equivalence between the results of the RPA calcu-
lation and of the macroscopic model discussed in the first
part of the work is straightforwardly obtained using the
relation

cop=(2eF/mr ) ' N (13)

obtained by identifying the kinetic energy per particle
given by the harmonic-oscillator model with the one of
the Fermi gas and by approximating (r ) with —', r, N ~

[the correction Scop/co~ entering Eq. (11) can be safely

This frequency coincides with the classical quadrupole
plasma value apart from the term in 2coo which origi-
nates from the quantum Fermi motion. '' The lowest one
occurs at the energy

COM i
=J2COp6(1+ 5COp /COp)

The magnetic strength carried by this state can be easily
evaluated in the RPA model. We find
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ignored].
Equations (11) and (12) are easily generalized to the

case of triaxially deformed clusters. In this case three
distinct excitations are predicted corresponding to the
three diFerent excitation operators

W' 1VF'= gy;z;, F'= gx;z;,

NF'= g x,y;.

6=0.2-0.4 the frequency of this state is predicted to
occur at the energy co =0.2-0.6 eV. This state lies belo~
the threshold for particle emission and carries a consid-
erable amount of magnetic strength. Clearly a more mi-

croscopic investigation of this state, based, for example,
on a quasiparticle RPA calculation ' with realistic
single-particle wave functions, would be very important
for a better understanding of its collective nature and of
the possible mechanisms of fragmentation of the magnet-
ic strength.

The resulting frequencies are

ruM i
= kos y+ (1/J3)sin y]AM i,

cuM| = [cos y
—(1/J3)sin y]roM|,

roM| =(2/J3)sin ycoM|,

(is)

where y characterizes the triaxial nature of the deforma-
tion according to the usual expression for the deformed
radius:

R(P,p) =Ro[1+ —,
' Bcosy(3cos 6 —1)

+(1/J3)Bsinysin icos p]

and AM| is given by Eq. (11). The magnetic strength
relative to the above excitations is given by 8'(Ml)

2 PB~M I ~.
In conclusion, we have predicted a magnetic state of

orbital nature in deformed clusters. The frequency of
this mode exhibits a bulk N ' dependence which dis-
tinguishes it from the surface-plasmon mode. For
clusters with N = 10-100 and .typical deformations
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