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Lack of Self-Averaging, Multiscaling, and 1/f Noise in the Kinetics of Domain Growth
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The nature of non-self-averaging behavior in the kinetics of domain growth is studied by Monte Carlo
simulations. Fluctuations in the scaling regime of the two-dimensional spin-flip Ising model are found to
involve multiscaling, as is known from other problems, such as percolating resistor networks and
diff'usion-limited aggregation. The frequency-dependent fluctuations in the scaling regime are found to
be (1/f)-like: The power spectrum obeys 1/ t~v, where tv=2nf is the frequency and P=0.9. These re-
sults can be tested experimentally.
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During a first-order phase transition, when one
quenches a system from a high temperature where the
system is disordered to a low temperature, ordering takes
place. A long-wavelength instability creates ordered
domains which grow as time goes on. ' When the
domains' average size R(t), as a function of time t, be-
comes large, it is often found that the growth follows
R —t", where n is the growth exponent. For late times,
the lengths scale to R(t). For example, the order-
parameter correlation function g(r, t) satisfies g(r, t)
= G(r/t") The ex. ponent n is known for some univer-

sality classes. For model A, the universality class of the
nonconserved Ising model, and model 8, the conserved
Ising model, the generally accepted results ' are n= —,

'

and n = 3, respectively.
In this Letter, we present a study of the fluctuations

around this late-time growth. In particular, we show for
the first time that those fluctuations, which are dominat-
ed by non-self-averaging behavior, '' give rise to multi-
scaling phenomena and 1/f Ilicker noise. These are fa-
miliar from the study of random systems such as per-
colating resistor networks and diA'usion-limited aggrega-
tion, and the self-organized critical phenomena of
driven systems. We believe that these phenomena are
due to the interplay between different length and time
scales (i.e., the polydispersivity of the evolving system)
during domain growth.

Lack of self-averaging during first-order transitions
has previously been noted and studied by Sadiq and
Binder, Gawlinski et al. ,

' and recently in an elegant
paper by Milchev, Binder, and Heermann. '' A lack of
self-averaging implies that the evolving system cannot be
decomposed into many independent parts. Thus, provid-
ed edge effects are not important, the statistics from one
sample of size N are a factor of 4 worse than the statis-
tics from four systems of size N/4. This has serious im-
plications, because self-averaging is the basis for the
theory of thermodynamic fluctuations. The usual situa-
tion is that relative fluctuations of thermodynamic quan-
tities are of order I/vW In such cases the central-limit
theorem can be invoked, the distributions of thermo-

dynamic quantities are Gaussians, and fluctuations van-
ish in the thermodynamic limit. ' We study two conse-
quences that the lack of self-averaging has for a system
undergoing a first-order phase transition: Spatial fluc-
tuations lead to multiscaling or a hierarchy of exponents,
while temporal fluctuations lead to 1/f noise.

The details of our Monte Carlo simulations are stan-
dard. We present results for the two-dimensional fer-
romagnetic Ising model with spin-Ilip dynamics (model
A). Experimental systems which correspond to this in-
clude binary alloys and chemisorbed systems on sub-
strates, undergoing order-disorder transitions. We have
also studied the spin-exchange Ising model (model 8);
those results will be presented in a future paper. ' The
Ising Hamiltonian is Jt'= —Jg&;~&cr;o~, where J is the
interaction constant, the sum runs over distinct nearest-
neighbor pairs on a square lattice, and the N spins can
take on the values cr; = ~1. The system is quenched
from an infinite temperature to a low temperature,
T=O.ST, (T=O and T=0.9T, were also studied), where
T, is the critical temperature. The system was studied
for up to 4000 Monte Carlo steps, and in at least 256 in-
dependent runs. Lattices of sizes 64, 128, and 256
were considered. The simulations were performed using
a multispin-cooling algorithm. The average domain size
R(t) was estimated from one of the following measures:
from the inverse perimeter density R, (t) =2/(2+E/J),
where E is the energy per spin, and from the magnetiza-
tion, where R (t) =NM, and M is the magnetization
per spin.

To study the motion of the growth fronts, we have
segregated the evolving system into sets of sites deter-
mined by the probability p of a spin flipping within one
Monte Carlo step. In Fig. 1, typical configurations as
well as "active" sites are shown. At an active site a spin
changes sign within one Monte Carlo step. The proba-
bilities p are generated by stopping a simulation at time
t, and then generating a large number of independent
configurations (250-1000, typically 500) at time t+1.
This was repeated at regular time intervals during the
order-disorder transition. It is evident in Fig. 1 that in-

551



VOLUME 63, NUMBER 5 PHYSICAL REVIEW LETTERS 31 JULY 1989
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FIG. l. (a) Typical configuration, N =256', T=0.5T„ t =25 Monte Carlo steps, and spins which are active with probability (b)

p~ 0.002, (c) p ~ 0.6, and (d) p ~ 0.9.

terface dynamics plays a key role in domain growth, as
expected. In particular, note that the description of the
system in terms of p's is both a convenient and physical
way to analyze the distribution of domains. Domains
with large curvatures have very active sites at their inter-
faces, while domains with small curvatures have relative-
ly inactive sites. Thus, studying the p's permits the study
of the polydispersivity of the evolving system in the late-
time scaling regime. By polydispersivity, we mean the
system consists of domains of many different sizes.

We have estimated the site growth distribution func-
tion, A(p, t), by determining the number of sites active
with the same p. ' This distribution changes in time be-
cause, at early times, a large amount of interface is
present and many sites are active, while at late times,
few sites are active. We characterize these distributions
by their moments, ' Mk(t) =+~A(p, t)p", following
standard treatments. Since the time dependence is
controlled by the domain size R(t), we make the Ansatz

(t) R(t) r(k) t nr(k)

where we make use of the known value of the growth ex-
ponent n= —,

'
in R —t". These exponents r(k) can be

thought of as corrections to dynamical scaling found in

first-order transitions. We have found that the Ansatz is
reasonable, in that the values which we obtain for r are
independent of time. Since there exists a large range of
curvatures (which are probed by the p's), r is a nonlinear

function of k, which is equivalent to multiscaling. The
usual "f(a)" description is discussed below.

The multiscaling behavior can be contrasted with the
scaling of the distribution P(R, t) for the domain size it-
self, ' shown in the inset of Fig. 2. P(R, t) is defined
over an ensemble of initial conditions. We have
M/, =JR P(R, t)R, with M/, —t "' . In this case
r'(k) is, to our accuracy, a linear function of k, which is
called "gap scaling. " Here, multiscaling is a conse-
quence of the scale over which we probe our system:
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FIG. 2. Exponents r of kth moments of distribution of firing
probabilities showing no gap scaling, i.e., r is not a linear func-
tion of k. Inset: Gap scaling with R moments, z'. Error bars
are estimated to be 3 standard deviations.
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FIG. 3. Dimension f of set of active sites vs strength of
singularity a. Error bars are estimated to be 3 standard devia-
tions.

FIG. 4. Natural logarithm of power spectrum P(m) vs natu-
ral logarithm of frequency ro. The line shows a fit by 1/f be-

havior. Exponent is p =0.9.

Af(p, t) contains explicit information about the short-
wavelength scaling fields, while P(R, t) probes only the
long-wavelength behavior of an ensemble of systems.
Gap scaling is associated with these long-wavelength
relevant scaling fields, as discussed by Tremblay, Four-
cade, and Breton, ~here an explicit connection to criti-
cal phenomena is made.

While the behavior of r(k) determines the asymptotic
properties of the moments MI„ it is also of interest to
find the scaling behavior of JV(p) itself, where say
A-R . The analysis is standard. The Legendre
transformation of r(k) gives

f(a) =ka —r,
where a dr/dk. The form can be motivated as follows.
Each moment M(k) is characterized by the most prob-
able p p*(k) in the weighted sum over the distribution.
Then, if p -R ', and JV(p*)-R, one obtains

f ka —r, with a natural interpretation for the Legen-
dre transformation. ' The f vs a curve is shown in Fig.
3. The exponent f can be interpreted as the dimension of
the space of singularities of p's with strengths a. Loosely
speaking, we have divided the system into many subsets
characterized by a ——lnp*/lnR, which have different

f's. A constant . value of f implies gap scaling, where
r(k) is a linear function of k. Figure 3 shows that this is
not the case here since f varies with a. Note that we
have defined JV in terms of many domains in a system of
size N, while in other fields only a single cluster is con-
sidered. This implies that f is negative here, since the
number of domains decreases as time goes on. The max-
imum value for f is approximately —1, because active
sites are at interfaces. Note that it is the large moments
which probe small length scales with large curvatures.

It is possible that some of our results are affected by
transients. Note that many studies' measure n and scal-
ing, while here we are essentially measuring the correc-
tions to scaling. Nevertheless, we expect multiscaling to
be a common feature of the kinetics of first-order transi-
tions. Indeed, we have seen the same qualitative trend in

model 8, the spin-exchange Ising ferromagnet. ' It
should be mentioned that these f vs a curves can be ob-
tained experimentally. The difhculty is that one requires
a large number of independent experiments, since the
curve is determined by all the probable motions of the
interfacial fronts, rather than only by the most probable
motion of those fronts.

As mentioned above, the hierarchy of exponents neces-
sary to describe the corrections to scaling is due to the
polydispersivity of domain growth. Therefore, there are
large spatial fluctuations between many nearby states of
the dynamical system, which are almost equivalent. This
is similar to the picture of Bak, Tang, and Wiesenfelds
for self-organized critical phenomena in simple driven

systems. They find that scaling and self-organization are
accompanied by temporal fluctuations which are (1/f)-
like, where tu-2+f is the frequency. Thus, we have

studied the temporal fluctuations in the scaling regime of
the random variable rt(t) R(t)/t 't —(R(t)/t 't ),
where the angular brackets denote an average over initial
conditions. Figure 4 shows that the power spectrum ' of
those fluctuations obeys

for small ru, where p 0.9 ~ 0.05.
We speculate the (1/f)-like temporal correlations are

a general feature of the kinetics of first-order transi-
tions. 's Note that, since p is due to fluctuations, it may
be dependent upon the dimensionality of space, unlike
the growth exponent n 'We ex.pect p to be measurable
through standard techniques. For example, inelastic
neutron scattering from a phase-separating binary alloy,
or a synchrotron-radiation study at sufftciently high reso-
lution, should be able to obtain this quantity. We should

also note that Tang and Bak have suggested scaling re-
lations for self-organized critical phenomena which may

apply here. %'e have not been able to test those relations
with our present data.

It is worth mentioning at this point why one would ex-
pect the physics of random systems to be analogous to
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that of a pure system undergoing a first-order transition.
Although this system is not random, it is polydisperse
with a diverging size of correlated regions, due to the ini-
tial instability following the quench from the disordered
state. The initial conditions are controlled by the weak-
coupling infinite-temperature fixed point, while the sub-
sequent dynamics are controlled by the strong-coupling
T~ 0 fixed point. Both fixed points are attractive, as
one would expect for self-organized critical phenomena.
Also, note there are 2 microscopic replicas of the initial
state, but only a few, say two, of the Anal one. The noise
in the initial conditions is amplified by the instability, so
that the replicas of the initial conditions give rise to
many dynamical systems which are not "close," i.e., they
cannot be reached by small thermal fluctuations.
Indeed, as time goes on, thermal fluctuations are more
and more ineffectual in averaging the structure of many
domains. The lack of self-averaging, then, is because
noise from the initial conditions is amplified by the insta-
bility to macroscopic length and time scales. One must
average over the initial conditions (an ensemble aver-
age), rather than only the thermal fluctuations in
different parts of one evolving replica, to control that
noise.

%'e have found that the scaling regime of the kinetics
of first-order transitions is dominated by non-self-
averaging fluctuations. Those fluctuations give rise to
multiscaling and I/f noise. In conclusion, we would like
to reemphasize that this behavior is accessible by experi-
ment. Such a study ~ould, in our opinion, be of consid-
erable value.
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