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Ion Thermal Confinement in the Enhanced-Confinement Regime of the Ti I'R Tokamak
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Central ion temperatures up to 30 keV and rotation speeds up to 8x10 m/sec have been confirmed

with new diagnostic measurements in the TI TR hot-ion enhanced-confinement regime, and the ion

thermal diAusivity is found to be non-neoclassical and comparable to the anomalous electron thermal

diftusivity. The dominant efTect of strong rotation is the downshifting of the neutral beam energies in

the plasma frame, which results in reduced ion and electron heating on axis, and the presence of oA-axis

ion heating from viscous damping of the plasma rotation.

PACS numbers: 52.50.Gj, 28.50.Re, 52.55.Fa

Central-ion-temperature measurements on early
smaller tokamaks and the lack of good profile informa-
tion led to a common assumption that the plasma ion
thermal transport was reasonably described by a thermal
diff'usivity, g;, whose magni. tude was typically up to a few
times that predicted by neoclassical theory coupled with

a convective power Aux =
2 n; T; v &. As a consequence,

ion thermal energy transport was not considered to be a
dominant loss channel in neutral-beam-heated plas-
mas. ' " With the development of the charge-exchange
recombination spectroscopy technique to provide reliable
measurements of the ion-temperature profile, this inter-
pretation has come into question. It is thus interesting
to study ion thermal confinement in the present genera-
tion of large, high-temperature tokamak experiments.
The enhanced-confinement regime of the TFTR toka-
mak ofI'ers an especially attractive environment for such
ion power-balance studies in large tokamak experiments
since the high electron temperatures and modest densi-
ties attained here result in almost negligible ion-electron
coupling, and ion thermal conduction is the dominant ion

energy-loss mechanism over most of the plasma cross
section.

The high-temperature enhanced-confinement ("super-
shot") regime is attained in TFTR by neutral beam in-

jection into a low-recycling target plasma. The dis-
charges studied here had a major radius of 2.45 m and a
minor radius of 0.79 m. Deuterium plasmas were heated
by up to 20 MW of deuterium neutral beam injection,
with about 6 M W countertangential to the plasma
current, and the remaining power cotangential. The
highest values of stored energy, central ion temperature,
and neutron emission were obtained with near-balanced
injection. With the availability of up to = 12 MW of
balanced beam power, maximum temperatures and neu-
tron output were attained at discharge currents of 0.8 to
1.0 MA. The ion-temperature profiles were highly
peaked for the balanced-injection cases, while they were
broader for the lower-confinement, purely coinjection
cases with high toroidal rotation speeds, as was also the

case for the measured electron-density profiles.
A multispatial and multispectral imaging charge-ex-

change recombination spectroscopy (CHERS) diagnostic
was installed on TFTR to provide radially resolved mea-
surements of the ion temperature, T;(R, t), and toroidal
rotation speed, v~(R, t), for a wide range of discharge
parameters. For most of the measurements reported
here, the Cvl 5292-A (n =8-7) transition was used.
The central values of T; and v~ in the enhanced-con-
finement regime measured by the CHERS diagnostic
and by x-ray Doppler-broadening measurements of the
Nixxvtt Ke line are in agreement within their respective
error bars. '

The measured profiles have been analyzed with the
SNAP (1D, equilibrium) and TRANSP (1 —,

' D, time-de-
pendent) kinetic analysis codes, with an emphasis on
deriving the ion thermal diffusivities and elucidating the
effects of rotation on the thermal ion power balance.
These codes use, among other parameters, the measured
profiles of ion and electron temperature, electron density,
and plasma toroidal rotation speed to derive the power
balance for each plasma species. Both codes can be used
in either an analysis mode, in which the measured T;(r)
profiles are used as input to derive a value of g;(r) from
the data, or in a predictive mode, in which a given model
is chosen for g;(r) and the resulting calculated T; (r)
profile is compared to the measurements. In these kinet-
ic analyses, we assume classical electron-ion coupling
and a spatially uniform Z, |T profile. The assumption of a
flat Z,~ profile is supported by visible continuum mea-
surements of Z,q and CHERS measurements of C+
densities in similar supershot discharges.

Comparisons of the measured T;(r) profiles with mod-
el transport calculations from SNAP in the predictive
mode show that the ion thermal diA'usion is strongly non-
neoclassical. For example, Fig. 1(a) shows the measured
T;(r) profile for a 0.9-MA discharge with 13.6 MW of
balanced neutral injection, n, =2.5x10' m ' and n, (0)
=5.0 x 10 ' m . The data, indicated by the solid
squares in the plot, include values obtained for r/a & 0.3
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ed in a separate paper. '

Figures 2(a)-2(d) show the calculated heating-power-
density profiles and the integrated power-balance profiles
for both the balanced-injection and the fully coinjected
discharges discussed above. To ease comparison between
these different cases, we plot here the power densities di-
vided by the volume-averaged total input heating power
from the neutral beams (i.e., the absorbed beam power
minus direct charge-exchange ion losses). Likewise, the
ion power-balance curves from sNAp shown in Figs. 2(c)
and 2(d) give the volume-integrated power losses nor-
malized to the total heating power. In the balanced-
injection case, the high relative beam energies lead to
substantial direct ion and electron heating in the plasma
center and strong central absorption of the neutral
beams in these low-recycling, low-edge-density dis-
charges. In contrast, the downshifted relative beam en-
ergies in the rotating-plasma case lead to reduced central
heating of the ions and electrons and a somewhat
broadened beam-deposition profile. In addition, there is
substantial of-axis heating of the ions due to viscous ro-
tation damping.

The ion power balance for the balanced-injection case
confirms that the ion power losses are strongly dominat-

ed by thermal conduction (given by n; g; V T; ) over most
of the plasma cross section, except for the central r/a
~ 0.2 region, where conductive and convective losses are
of equal magnitude. In some contrast, the ion power-
balance analysis of the rotating plasma [Fig. 2(d)] indi-
cates that convection dominates the core power flow for
r/a 0.3, and it remains non-negligible (along with
electron-ion coupling) beyond r/a=0. 6. The volume-
integrated power input to the ions from viscous damping
of the plasma rotation becomes a significant fraction of
the overall input power to the ions for r & 0.4 m. In both
cases, the consequence of g;(r) =g, (r) is that the ion
loss channels are much more important in the overall
power balances than for the case of neoclassical trans-
port.

Figure 3 shows the comparisons of the inferred g;(r)
and g, (r) for four balanced- (zE =0.13 sec) and two
unbalanced- (zE =0.10 sec) injection cases. These shots
had 0.9 MA, with P;„„=11MW for the coinjection
cases, and 12-14 MW for the balanced cases. The re-
sults are plotted in Fig. 3 as a range of values of g at
each radius, with the range indicating the spread of
values obtained from the similar discharges. The uncer-
tainties in the values of g;(r) and g, (r) from a single
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FIG. 2. Comparison of input power densities and volume-integrated ion power balance for a nonrotating and strongly rotating
discharge. (a), (c) For the balanced case, P;„=13.6 MW and P,b„,b,q =12.8 MW; (b), (d) P;,„=11.0 MW and Pgbgopbgg 10.4
MW.
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