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We discuss the possibility of the coexistence of two states with different wavelengths in the framework
of phase dynamics. We investigate in detail this phenomenon which is intrinsically nonlinear and give a
Lyapunov functional for the case of a phase associated with a stationary pattern. The relationship of the
confined states discussed here with recent experimental observations of localized states possessing a
wavelength different from that in the bulk of the container for the case of slot convection and for the
Taylor instability between co-rotating cylinders is critically examined.
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Recently the observation of confined states in an an-
nulus near the onset of convection in binary-fluid mix-
tures has been reported.! By confined states one means
that for part of the annulus a convective pattern is
visible—in the case of binary mixtures, traveling rolls
— whereas apparently the rest of the convective cell is
free of convection. This phenomenon, which was not
predicted theoretically, has since attracted considerable
interest.?™

Here we predict that an analogous phenomenon exists
in phase dynamics, namely the coexistence of two pat-
terns showing different wavelengths in different parts of
the cell. By phase dynamics we mean here the analog of
hydrodynamics for large-aspect-ratio pattern-forming
nonequilibrium systems.®® The analogs of the hydro-
dynamic variables are the phase variables, whose slow
spatial and temporal variations characterize the changes
of the wavelength of the pattern as a function of space
and time. We point out that confined states in phase dy-
namics are an intrinsically nonlinear phenomenon, which
cannot be obtained from linearized phase equations. We
critically compare our predictions with recent experi-
mental results on slot convection in a simple fluid® and
on the Taylor instability for the flow in the gap between
co-rotating cylinders.'®!" By slot convection one means
that the height of the cell is larger than the width
whereas the length is large compared to both. Critical
experiments to test the applicability of our approach to
the systems already studied experimentally, as well as to
other systems, are suggested.

The importance of studying the slow spatial and tem-
poral evolution of a pattern with a characteristic wave-
length has been recognized in Ref. 6 and it has been sug-
gested that a diffusion equation for the variation of the
wavelength,

V.I=Dy,.\’.\”7 (1)

is obtained even well above onset of the instability, a re-
gime that is not accessible by amplitude and envelope

equations. In Eq. (1) we have written down the one-
dimensional special case of the equation derived in Ref. 6
for Bénard convection. From the equation one reads im-
mediately that local perturbations in the average wave-
length diffuse as a function of time and do not propa-
gate. Close to local thermodynamic equilibrium diffusive
modes are known to occur, for example, for heat and
vorticity diffusion in a simple liquid. The applicability of
the concept of phase diffusion has been experimentally
verified quantitatively for the case of Bénard convection
in Ref. 12. Since then a large number of studies on
phase dynamics have appeared. Most of those, however,
have concentrated on phenomena obtainable from linear-
ized phase equations®'>'% or on the theoretical investiga-
tion of the Kuramoto-Sivashinsky (KS) equation,'>!7
which is known to lead to weak turbulence for negative
values of the diffusion coefficient. '8

Here we study in detail a phenomenon which is intrin-
sically nonlinear and which can occur, e.g., for stationary
patterns such as stationary Bénard rolls. To focus on the
essential features of the nonlinear results predicted here,
we investigate exclusively spatial variations in one direc-
tion. That is, we assume, for example, for the case of the
Bénard instability that the width of the cell is small com-
pared to its length and thus that instabilities parallel to
the roll direction are suppressed.

For such a pattern one has only one phase variable y
describing the spatial and temporal variations of the
wavelength,

y=ID+Ey,+F(y.) Ay — Gyrnr (2)

where we have kept the cubic nonlinearity in Eq. (2) to
guarantee that the solution is bounded. As has been
pointed out in Ref. 7 one has to lowest order in the non-
linearity only the quadratic term, which does not lead,
however, to bounded solutions (Ref. 7).

First we note that Eq. (2) can also be written in terms
of the wave vector y, =g; it then takes the form

g=MD+Eq+Fq?) g+ (E+2Fg)q,)>—Gqurxx. ()
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We note that the linear terms are the same as in the
phase equation, whereas the nonlinear terms change
their appearance.

Close inspection of Eq. (2) shows that it can be de-
rived from a Lyapunov functional; that is, we can rewrite
Eq. (2) in the form

y=—6V/6y @)
with
= D, vy E( )3
vih = fax| 240+ L0

F i, G 2

and where

V({u/})=fde({y/}).

We find that V is strictly nonincreasing in time provided
surface terms vanish. This property of ¥ ({y}) guaran-
tees global stability assuming F and G ta be positive and
demonstrates that ¥({y}) is purely diffusive and does
not show oscillatory behavior. The quantity V({y})
guarantees global stability of all solutions of Eq. (2).
Since ¥ <0 the relaxation processes occurring in physi-
cal systems associated with Eq. (2) are purely relaxa-
tional. and do not show oscillatory behavior. We note
that such a functional cannot be found straightforwardly
and may not exist for the KS equation, since its non-
linearity is not of the gradient type. For the nonlinear
phase equation associated with a stationary pattern as
is considered here, the transformation x— —x,
w— —y assures that to the order given in Eq. (2) all
nonlinearities can be derived from the generalized poten-
tial V [Eq. (5)]. Only when higher-order nonlinearities
and nonlinearities containing higher-order derivatives are
considered is this property lost.

To make close contact to a generalized Ginzburg-
Landau energy as is frequently derived to characterize
the mean-field behavior close to a phase transition in
thermodynamic equilibrium, we rewrite Eq. (5) in terms
of the wave vector (g =y, ):

F

F 4, G 2
179 + 2 (g)*]. (6)

- D ,, E ;
v(gh fdx[zq + e 9 +
Analyzing Eq. (6) we note immediately that is has the
form of the Ginzburg-Landau energy for a weakly first-
order phase transition with the term proportional to G
being the analog of the gradient energy.

Pointing out this analogy to equilibrium first-order
phase transitions greatly facilitates the interpretation
and the analysis of the physical content of Eq. (5). The
local wave vector y, acts as the analog of the order pa-
rameter and the gradients of the local wave vector
characterize the length scale over which the local wave
vector changes. Thus the term proportional to G gives us

the analog of the coherence length for the changes in the
local wavelength. Depending on the signs and magni-
tudes of D and E in Eq. (5) a number of different
scenarios for the nonlinear behavior of a stationary pat-
tern can arise.

First of all we note that for a negative value of the
phase diffusion coefficient D the fourth derivative in Eq.
(2) must be kept to linearly stabilize the system for large
wave vectors. The resulting situation is then similar to
that of the KS equation except that the resulting pattern
showing a finite-amplitude variation of the wave vector is
not irregular. Here we focus on the case of positive
phase diffusion coefficient, which is more easily accessi-
ble experimentally. This means that a constant wave-
length g, of the pattern is locally stable centered around
v, =0. As pointed out above the cubic nonlinearity is
globally stabilizing. To investigate the influence of the
quadratic nonlinearity we search for additional station-
ary solutions of Eq. (2) with constant w,. Since
dV/dt =0 the system will tend to a state in which
dU/dgq =0. We find, in addition to y, =0, the two addi-
tional roots of dU/dy, =0,

3E 160F |
- [1- }

(pi)os=—== IE @)

4F

From Eq. (7) and the global shape of Eq. (5) for large ¢
we conclude immediately that ¥ ({g}) has two local mini-
ma and one maximum provided E2>> 16DF/3, that is,
| E| must be sufficiently large. From the existence of
two local minima it becomes clear that two different
wavelengths are locally stable and that one can thus have
a stationary pattern where one observes different wave-
lengths in different parts of the cell. For example, a
confined region of larger wavelength can be surrounded
by a bulk region of smaller wavelength in a stationary
situation. The fourth-order derivative term in Eq. (2)
then serves to smoothly connect the two regimes of
different wavelengths as a function of space. Inspecting
Eq. (2) one notices that D, F, and G can be scaled out by
rescaling length, time, and amplitude. That is, aside
from the length of the box, Eq. (2) contains only one
variable parameter, which we have chosen to be E. In
Fig. 1 we have plotted the generalized potential as a
function of y,. For small values of the modulus of E,
v, =0 is globally stable (i.e., the lowest value of the po-
tential) and there is no other local minimum. As the
modulus of E increases, one finds first a nonzero value of
v, to be a local minimum and then for even higher
values of |E | this local minimum becomes the global
minimum. This crossover occurs for | E | =+/6. At this
point it seems important to stress that both the global-
stability properties and the values of the wave vectors
corresponding to the extrema of the potential are ob-
tained analytically in the case of a stationary pattern as
studied here.

More generally we may look for stationary solutions of
Eq. (2) by noting that, since dV/dt <0, the system will
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FIG. 1. Plot of the generalized potential as a function of g for g., =0 for different values of E: (a) E=2.2, monostable potential;
(b) E=2.4, local minimum at lower g value appears; (c) E =6, the two minima are equal in depth; (d) E=2.6, the second

minimum has now become the globally stable one.

tend to a state in which §V =0, giving

pg+Lq+ L4 =Gy, . (8)
2 3

To demonstrate the importance of the higher-order-
gradient term for the coexistence of two different wave-
lengths in different parts of the cell we have plotted in
Fig. 2 a solution of Eq. (8) for | E | =6, the value of E
for which the two wells are equal in depth. It is in the
vicinity of this value that a solution showing two
different values for the wavelength in different parts of
the cell will be observed. Going away from this value,
the wavelength corresponding to the deeper well for the
Lyapunov functional will be preferred to the extent al-
lowed by the constraints imposed at the boundaries.

In closing the discussion on the Lyapunov functional
and its properties, we emphasize that the existence of the
Lyapunov functional guarantees that g is bounded, re-
gardless of whether the “gradient energy” (proportional
to G) is incorporated or not. To guarantee, however,
that g, is bounded the incorporation of the gradient en-
ergy is essential for the case where one deals with two
wells.

Since the confined states occurring in phase dynamics
show a number of similarities to amplitude slugs (local-
ized structures occurring between two stable regimes)
that arise in amplitude equations,'®?° it seems worth-
while at this point to discuss the similarities and
differences between the two. Both phenomena are intrin-
sically nonlinear. Both are subcritical phenomena,
meaning that the background state needs to be perturbed
beyond a certain level before the state under discussion
will form. Both rely on the existence of two basins of at-
traction (or two wells) so that different regions of space
may coexist in different basins. The main difference is
that the relaxation process into the wells in phase dy-
namics occurs diffusively, relying on spatial inhomo-
geneities for relaxation, whereas the relaxation process in
the amplitude equations is of the pure damping type and
is independent of spatial inhomogeneities. Therefore, a
good term for a confined state in phase dynamics which
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emphasizes both the similarities and differences is phase
slug.

Now we come to the comparison with the experiments
showing stationary localized states with a wave vector
which is different from that in the bulk of the sample.
For the case of slot convection studied by Dubois er al.
(Ref. 9; also see Ref. 21 for a detailed description of the
setup), the analogy between the results presented here
and the experimental observations is rather striking. For
both the experiment and the approach presented here,
one finds a region for which the wavelength in part of the
cell is different from that in the bulk of the container and
both regimes are completely stationary. To further
check experimentally the applicability of our approach to
the coexistence of states with different wavelengths in
slot convection, it would be very important to make
abrupt changes in the applied temperature gradients into
the regime of Rayleigh numbers for which the localized
states have been observed. Our prediction would then be
that different lengths for the confined states should be-
come accessible experimentally. Another interesting

FIG. 2. A stationary solution for E =+6; we note the fairly
rapid change in wavelength between the two values for the
wavelength as is also observed experimentally. The horizontal
line at g = —+/6 corresponds to the local minimum of the po-
tential U given by Eq. (7).
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point is that the range over which the stationary confined
state exists in experiment is fairly wide, in contrast to the
stationary states given by Eq. (8). This may be ex-
plained by noting that in experiment the number of rolls
in quantized, meaning that the wells must be fairly un-
equal in depth before the entire system (subject to
boundary constraints) will go over into the deeper well.
This observation leads to the prediction that longer cells
will have a narrower range of parameter values over
which stationary confined states exist.

For the case of the dynamic domains observed for the
flow between concentric co-rotating cylinders'®!" the
analogy is not quite as immediate as for the case of slot
convection, since for the Taylor instability the wave-
length variation is not strictly one dimensional, but has
spatial and temporal variations in the azimuthal direc-
tion as well. Focusing on the direction parallel to the
cylinder axis, however, the same global picture as that
outlined above for slot convection emerges. One has two
locally stable states existing in different parts of the gap
along the cylinders. To capture the azimuthal motion as
well it will then be necessary to incorporate also a phase
equation describing the azimuthal pattern. This can be
done along the lines discussed in Refs. 7 and 8 for the
Taylor wavy mode and for the modulated Taylor-wavy-
mode state. From such an analysis it emerges (Ref. 7)
that the propagative phases in the azimuthal direction,
which obey equations of KS type, couple back to the
phase describing the location at the vortices in the axial
direction. It is this cross coupling which can render the
motion irregular in time in the axial direction as well.

For the case of a spiral pattern one obtains due to the
lack of mirror symmetry both types of nonlinearity
characteristic of phase dynamics,'3 namely the KS non-
linearity associated with propagative phases and the
gradient-type nonlinearity discussed in detail in this pa-
per as it is associated with phases describing a stationary
pattern. In this case the nonlinear equation reads

d} — ¢y — Chxxx =D¢rx + G‘Pxxxx +E¢x¢x.\'
+F(:) 05 +H(g:)?. )

We note that no Lyapunov functional is known for this
equation and we speculate that it might show the coex-
istence of a stationary roll pattern and of a spatially and
temporally irregular state, since it contains both types of
nonlinearities.

In conclusion, we have shown how one can obtain in
the framework of phase dynamics, stationary states for
which different wavelengths coexist in different parts of
an experiment cell. We have demonstrated that this is

an intrinsically nonlinear phenomenon. For a phase vari-
able associated with a stationary pattern a Lyapunov
functional is obtained. We have critically analyzed re-
cent experiments on slot convection and the Taylor insta-
bility for co-rotating cylinders and we find qualitative
agreement with the results presented here. In addition,
we have suggested experiments to further test the con-
cept presented.
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