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Photon Pairing and the Strong-Coupling Phase of Massive Quantum Electrodynamics
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By using the well-known expression for the vacuum polarization as the low-energy eff'ective Lagrang-
ian, photon pairing and condensation are discussed. Above a certain critical coupling, pairing instability
occurs and magnetic-type condensation is realized with (:F„,:)& 0. A possible confining property of the
condensed vacuum is suggested by the use of the dual potential.

PACS numbers: 12.20.Ds

The question of the existence of the strong-coupling
phase in quantum electrodynamics (QED) is now an in-

teresting subject, especially in connection with the tech-
nicolor theory ' and with the anomalous GSI e +e
events in heavy-ion collisions. The ladder Schwinger-
Dyson equation for massless continuum QED and also
lattice numerical calculations suggest that, above a crit-
ical value of the fine-structure constant a, a new phase is
realized where the electron and the positron condense to
form a pair and chiral symmetry is spontaneously bro-
ken.

The central problem is to clarify the nature of the con-
densed vacuum and for that purpose we have to investi-
gate the nonperturbative phenomenon in the photon (A„)
channel, just as in quantum chromodynamics (QCD)
where the nonperturbative nature of the gluon channel is
crucial for the confinement of quarks.

In this paper we study the photon pairing phenomenon
for massive QED using the familiar lowest-order formu-
la for the vacuum polarization as the effective photon
Lagrangian. It is obtained by integrating out the elec-
tron field and by keeping the first term of the expansion
in terms of the number of derivatives of the field strength
(F„„).The result is

X(x) = —-„' F2,(x)+a[F„.(x)l'

+b [F„,(x)F""(x)]',

where F„,=d„A, —8,A„=Bi„A,], F„,=ep p= —,', b=a /90m, and a=e /4x. The symbol e„,p is
the totally antisymmetric unit tensor, m the electron
mass, F„, the renormalized field strength, and u the re-
normalized fine-structure constant. Since (1) is the
low-energy effective Lagrangian, we use (1) for photon
momentum smaller than p. This p is the phenomenolog-
ical parameter and our results depend on p/m. Adler
discussed photon pairing by (1) but with the background
nonflat metric. Here we study (1) in the flat metric
space. We summarize first the conclusions of this paper.
They are obtained by some approximations since (1)
cannot be solved exactly. But our approximation scheme
is gauge invariant.

(1) Within the ladder approximation, the two-body

bound-state equation [Bethe-Salpeter (BS) equation] for
the photon has a tachyonic solution above a certain criti-
cal coupling constant a, . This is due to the fact that the
a term in (1) produces attraction and the b term repul-
sion between two photons, and the net effect is an attrac-
tive force since a & b.

(2) Through the use of the mean-field approximation,
the magnetic-type condensation of F„, is shown to occur
for a & a,'; (:F„,:)&0. Here:: denotes the normal or-
dering. In order to determine the magnitude of (:F„,:)
we need higher-order terms such as (F„,) . The fact
a, ~a,' (in fact a,' =2a, ) is common to any theory if it is
not solved exactly. The numerical value for the parame-
ter connected with the instability (a„ for example) and
that with the condensation (a,') differ from each other
mainly due to the fact that the many-body effects are not
included in the above approximation scheme for the
study of the instability.

(3) The magnetic condensation leads to an antishield
ing effect for the electric current. For a & e,', there
arises a possibility that the magnetic potential 8„,
defined below, becomes a good coordinate so we make
the dual transformation from A„ to the dual potential
C„. The condensation (:F„,:)&0 then has a shielding
property for C„: the magnetic shielding. By these obser-
vations a possible phase is pointed out where the
confinement of the electron is realized. Now we discuss
these points separately.

Pairing instability. —Consider the photon four-point
Green's function T "'"'"'"'(k~,k2, k3, k4). This is in-~ P I P2P3P4

dependent of the gauge chosen due to the form of the in-
teraction given in (1), except for the graphs which con-
tain disconnected free photon propagators. But such
graphs do not produce the pole in the two-photon chan-
nel so that the BS equation is independent of the gauge
to any order of the perturbation. Introducing the expect-
ed bound state I8), the BS amplitude can be written in

Fourier space as

4C„,(p,p')—:
g d pJ d p'(2x) e

« "'(0
I A, (x)A.(y) I».
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Now the ladder BS equation is given as

C„,(P, q) =& d k(2') T„,„,(P;q, k)D '"~( —,
' P+k)D '" ( —,

' P —k)C~ (P,k),
where we have set p =P/2+q, p'=P/2 —q, and T is the
lowest-order contribution to T apart from the four-
momentum conservation factor. The bare propagator
has been denoted by D„„and C„,satisfies p4C„, =p"C„,
=0, again due to the type of our interaction. Note also
that C„,(p,p') =C,p(p', p).

We first discuss the bound state of zero total four-
momentum, P„=O. Then C„, has the form
C„,=(q g„,—q„q,)C(q ). After some algebra and the
Wick rotation we see that the constant solution,
C(q ) =C, exists if the following relation is satisfied:

t

([F„,(x)]2)0 from the quartic terms of (1) where ( )o

denotes the expectation value in the normal vacuum

state. For this purpose the formula

(F„,(x)F (x) &
= —,

' (g „g, —g„g, )(F„„(x) &

is used. We throw away the constant term. As for the
bilinear term, we get the result I = —

~ (1 acro/8 )
x ($1„&„l)~. For acro/8 & 1, the coefficient of F„,
changes sign, which is a signal of instability. In fact, the
Hamiltonian corresponding to the above L is given by

1=
2 g„d k/(2'), g=(2 /3)(a —b) &0.

Integrating over the region k & p, we conclude that
the bound state of P„=O is formed if a=a, where

a,p =2410m . For a & a„ this bound state is expected
to become tachyonic and the system will become unsta-
ble. This can be discussed by assuming P„&0. Now
we have two tensor bases for C„„one of which is

[(p p')g„, —p„'p, ]D while the other involves the fourth
power of the momentum. We neglect the latter since it
is not important in the low-energy region, which is in ac-
cordance with the approximation scheme of this paper.
In this approximation the solution D =const exists if the
following eigenvalue equation is satisfied by P:

dk (P/4 —k ) +1
(2') (P /4+k )' —(P k)

where a Wick rotation has been performed. For small
spacelike P, (2) becomes 1 =(3/64tr )gp (1 —P /
p + ). We therefore conclude that for a & a„ the
tachyonic bound state is formed in the two photon 0+-
channel which is the signal of the instability. Here a, is
given by a,p =2410m . The appearance of the com-
bination a,p is natural since for any QED diagram the
photon propagator D„„(k) is multiplied by e so that the
eA'ective coupling constant is given by e f"d kD„,(k)
—e p . In Fig. 1, the relation between P and a is plot-
ted.

Magnetic condensation; electric antishielding. —The
above picture of the instability can also be understood
in the following way. We extract the term o.o =

H = —' (1 —
ger /8 ) [E (x) + H (x)],

where E~ =Fo~, H~ =F23, etc. For ger /o8 & 1, the photon
condensation occurs in the direction (:(E +H ):)& 0.
Note here that since the constant term has been discard-
ed the operator in the above Hamiltonian is, in fact, the
normally ordered one. Using the relation

&:(E +H ):)= —,
' (:F„',(x):)=——,

' o.

obtained by the same formula as (3), we conclude that
for a& a,' magnetic type cond-ensation of F„„(x), i.e.,
o &0, occurs. Here a,' is given by a,'p 4v5m . We
have used oo =6fd k/(2') in the Wick-rotated form.
There is a discrepancy of a factor of J2 between a, and
a,'. This is due to the diA'erence of the approximation
scheme as has been stated.

The important fact is that the vacuum Auctuation of
the photon field has an antishielding property since the
dielectric constant e= 1 —(cr /8ois less than unity and it
becomes zero at a =a,'. complete antishielding. The
central problem is to clarify the nature of the condensed
vacuum which is realized above the critical coupling. It
is di%cult to give a complete answer to this problem but
we suggest a possible confining phase by a simple argu-
ment.

Dual potential; magnetic shielding and confinement—Let us rewrite (1) in term of the dual variables which
is quite easily done in the Abelian case. We have simply
to change the variable from 4„ to F„,by introducing the
8 function 8(8"F„,) corresponding to the Bianchi identi-
ty in the functional measure of the path-integral formu-
la:

FIG. 1. The eigenvalue P as a function of a. P & 0 is

spacelike.

[dF„,] Q&[t)"F„,(x)]exp t'„d'xL(x)
X

The field strength can always be decomposed as F„,
=al„~,l+ ,'.„„.a' B, where 8„A"—=B„B"=0 and the
Bianchi constraint becomes 8(&B„).

The dual potential C„ is introduced through the para-
metric representation of 6'(&B„) so that the Lagrangian
(1) becomes L(x)+ —,

' C„&B"and the functional integra-
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tion is to be done over A„, 8„, and C„. The bilinear term
is now

I-p —
d (8[„A,)) + —,

' (8[„8„1)+ —,
' C„&8".

The 8 term here has wrong sign but it does not cause
any trouble since after C„ integration the B„ field decou-
ples from everything due to the factor ()(&8"). Now we
extract the term cr p={[8„[A„i( x)l )p from the Lagrang-
ian (1) which is now written in terms of A„and 8„.
Then the bilinear term is

~4 (1 perp/g) [(8[/eA ]) (8[/eB ]) ] + 2 C/e+8

For gap/g & 1, the A„ field becomes tachyonic but at the
same time the B„ field turns into a stable coordinate,
suggesting that the strong-coupling phase is described by
the magnetic potential.

Therefore, we switch to the dual representation after
extracting the condensed value o from L of (1). This is
done by replacing o.o by o. in the last expression. The
dual Lagrangian LD is given by integrating over A„and
B„as ID = ——,

' (1 —ga/8) '(8[„C,[) . Since o &0 for
the strong-coupling phase, the photon condensation has
the effect of shielding for the dual potential —magnetic
shielding. If we measure the condensation in terms of
C„, it is seen that p={:[8[„C,[(x)]:)is opposite in sign
to a):

p- —(&a/8)6 d"k/(2)r)'= ——", (a —b)a(T .

This is natural since A„and C„are dual to each other.

FIG. 2. Graph contributing to the string tension. The loop
is the Wilson loop and at x or y we have a factor e„,p 8 PB (x)
or e„...a"'8 '(y).

The condensation of the dual potential has a profound
effect. The condensation is represented by the graphs
with an infinite number of external C„ lines and there-
fore if we calculate the expectation value of any operator
the integration over C„does not necessarily lead to
8[„8,1 =0. This can easily be seen in the extreme case
where the integration is dominated by the condensed
value of (8[„C,[) . The complete dynamics of the C„
field is governed by the Lagrangian obtained by integrat-
ing over A„and 8„(or over F„,) using the Lagrangian
L(x)+ —,

' C„r-8„. We assume, based on the above argu-
ments, the following Lagrangian for the C„ field in the
condensed phase:

Lg(x) = ——[I+(p/op)] -'(8[„C,~)', & & 0. (5)

This is the Lagrangian for the vacuum sector of A„and
8„.

A direct consequence is the confining property of this
phase. Let us calculate the expectation value of the Wil-
son loop,

exp (e(PA„(x)dx" =) —e dae'(x)Fe„(x)„dec'(y)P„, (y)).
Since F„,now contains a B„ term we see that nonzero string tension emerges through the graph shown in Fig. 2, where
the 8„-C„transition comes from the term C„&B in (4). We note here that the 8[„A,[ term and the unity in 1+ (p/crp)
do not contribute to the string tension. For a large area S enclosed by the loop, we get

exp (e([Ae(x)dx" )=)—Se ( p/ae) (d k /(2x)

where fd kd indicates integration over the momentum
perpendicular to the plane of the loop. We get, there-
fore, the string tension a =e (4m/3)( —p/p ). Here we

have cut off the integration at
~
kd

~
=tu since k~~ =0 for

large S.
The confinement picture we have is not of the Aux-

tube type since the B„or C„ field remains massless. In-
stead of Aux squeezing we have a linear potential be-
tween the electron and positron with the electric Aux

spreading over the whole space.
We finally discuss several points. They should of

course be studied in a more complete way.
(1) The long-range van der Waals force exists in the

condensed phase, which will lead to rich phenomenologi-
cal consequences. These may aff'ect the GSI experiment
of anomalous e+e events.

(2) For massless QED, we know that the e+e pair

condensation occurs and the critical coupling has been
known to exist leading to the spontaneous chiral-
symmetry breaking. We are, of course, interested in the
relationship between our photon condensation and the
electron-positron condensation, but in order to discuss
this problem we have to utilize an expression different
from (1) since the formula is not applicable to the mass-
less QED.

(3) If the above phenomenological approach is correct,
the physical picture of confinement will be different for
the strong-coupling phases of QED and of QCD. The
differences appear in three ways. (i) For QCD we be-
lieve that the critical coupling constant is zero due to the
asymptotic freedom, whereas for QED we will have a
finite critical coupling constant. The reason for this
discrepancy is most easily seen by looking at the instabil-
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ity equation for gluon pairing in QCD ' and for e+e
pairing in QED ' and our Eq. (3) for photon pairing in
QED. We see that it is due to the different behavior of
the kernel of the instability equation near small momen-
tum. The relationship of our new phase with the zero of
the P function in the renormalization-group equation
should also be investigated. (ii) As has been stated
above, for the condensed phase of QED, the electric flux
tube will not be formed which is quite diA'erent from
what is expected for QCD. The cause of this difference
is that for QCD the dual potential is expected to acquire
mass, but for QED it will remain massless. (iii) The
gluon will be confined in QCD, but the photon will not
be. In fact, for Abelian theory there is a formal proof"
for the existence of the zero-mass pole of the Green's
function in the vector channel. The same argument is
expected to be applicable to our case and we have a
zero-mass pole which prevents the formation of the flux
tube. The precise excitation spectrum in the condensed
phase has to be investigated by a more reliable method.

The author thanks Professor T. Kugo for discussion on
the existence of the massless pole in Abelian gauge
theory.
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