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Scaling Theory of Self-Organized Criticality
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We study the phenomena of self-organized criticality originally proposed by Bak, Tang, and Wiesen-
feld. A continuous-energy model is introduced. Using numerical simulations, we find that energy is

homogeneously and isotropically distributed in space, and that it is concentrated around discrete values.
%'e propose a scaling theory to estimate the various exponents. The activation-cluster size distribution is
found to be D(s) —1/s', z =2 —2/d; and the dispersion relation t —r', z =(2+2)/3.

PACS numbers: 05.40.+j, 05.70.Jk, 72.20.op

Bak, Tang, and Wiesenfeld ' (BTW) have recently in-
troduced a sandpile model to describe the so-called self-
organized critical (SOC) phenomena. A remarkable
feature of their model is the ever-amplifying, self-
adjusting activation processes at all length and time
scales. The BTW model has many possible applications
in various realms of science; e.g., it models earthquake
mechanisms. It is perhaps the simplest model that cap-
tures the characteristics of a vast class of spatial and
temporal evolution processes. The BTW model has since
been studied in the fashion of traditional critical phe-
nomena and extensive numerical simulations have been
carried out. A host of scaling exponents and their rela-
tions have been proposed and numerically measured.
Subsequently, Obukhov developed an e-expansion
renormalization-group scheme, which enabled him to
predict the upper critical dimension d, =4, along with
the one-loop calculation of the exponents.

In this Letter we analyze SOC processes as a transport
problem of a conserved quantity, which for convenience
we call energy (this terminology was also used by BTW'
on some occasions). We work with a variant of the
BTW model in which the energy variable assumes con-
tinuous values. We believe this choice should not alter
the universality scaling class„Our numerical simulations
are intended to explore special features of this
continuous-energy model. A salient result is that in criti-
cal states, energy is concentrated around a few "quan-
tized" values. Using energy conservation and the local
nature of energy transfer in our model, we derive the dis-
tribution law of the size s of activation clusters:
D(s) —1/s', z =2 —2/d for ~ & d ~ 1, which agrees
with the results obtained in special cases (for d =2 and
3) of previous simulations. ' Using an argument of lo-
cal repulsion among the activation events, we find that
the relaxation time t of an activation cluster of linear
size r obeys the dispersion relation t —r', z =(d+2)/3
for d ~ 4, which is also in reasonable agreement with the
numerical findings.

Description of the model. —Let us take a hypercubic
d-dimensional lattice; energy E can be stored on each
node. At time t, an input energy 6 (0 (6 ( 1) is added

to that of a randomly chosen node at r, such that
E (r, t + 1 ) =E (r, t ) +8. E (r, t ) thus assume non-nega-
tive continuous values, and this process repeats itself.
There is a limit, E,.„,on the allowed energy on any
node. If, at a given time t, the energy on the node r is
E(r, t) & E „„,an activa. tion event will occur with the
following consequence: The full amount of energy
E(r, t) will be transferred, in equal parts, to its 2d
nearest neighbors and it is reset to zero. The transferred
energy, in its turn, acts as input energy for the neighbor-
ing nodes. Energy on these nodes increases and, whenev-
er the limit E „.

„
is again reached, further activation, en-

ergy transfers, ensues. Without loss of generality, we
take E „.„=1 throughout this work. A single input-
energy event may trigger oA' activation on a set of con-
nected nodes; we call this set an activation cluster, or
avalanche. ' The boundaries are assumed isotropic and,
in the thermodynamic limit, at infinity. We adopt free
boundary conditions: E (boundaries, t ) =0. By energy
conservation, the transferred energy is eventually let out
through the boundaries.

We assume that energy input takes place at a rate so
slow that the processes are adiabatic: The system has to
be allowed to quiet down (relax) before input energy is
again introduced. This adiabatic condition is intended to
avoid possible complications of cluster-cluster interac-
tion. Thus the system only responds (activation may or
may not happen) to the introduction of input energy,
otherwise it is quiescent. After a sufticiently long time
the average value of the stored energy reaches a plateau,
which we call the critical energy storage E,. The system
is then said to be in dynamical equilibrium, or critical.
If the average stored energy is too high, the system be-
comes particularly prone to activation, and energy is
more rapidly transferred out. The opposite will happen
if the average stored energy is below the critical E,. The
two conAicting attempts, to maximize the total energy
content by the introduction of input energy and to stabi-
lize the system by relaxing and transferring energy,
compromise to sustain equilibrium.

We have numerically measured the critical energy:
for d=2, E, =062+001, and for d=3, E, =057
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FIG. 1. The energy distribution of a single node P (E) in

critical states, for a 60 & 60 square grid. It is obtained by
averaging over all the nodes of the system and over a long time
interval. Input energy was chosen continuously between 0 and
6 (= 2 ) to avoid possible artificial influence by the input
amount. All energy values can be approximately packed into
four peak values. In ascending order, they represent roughly
10%, 16%, 32%, and 32% of the total nodes, respectively. The
nodes of the last three values are colored by green, blue, and
red in Fig. 2. +f +f~ m~ ~Mme+

~i~~~WW

~0.01. (As for BTW, in our version of the model
d=l is also a trivial case, where E,—1 and the whole
system is a single cluster. ) Figure 1 shows a typical en-

ergy distribution of the dynamical equilibrium state of a
two-dimensional system. Energy is concentrated around
four distinct peaks. Except for the peak at E=0, the
other three peaks have finite spreads. In general, there
are 2d peaks for the hypercubic lattice with the nearest-
neighbor interaction. This shows that energy can be
transferred only in multiples of a finite quasiunit. These
peaks represent the probability of occupation in quasi-
units, and may be interpreted as dynamical attractors. It
is remarkable that energy is "quantized" in such a way
in critical states. We believe the finite spreads are due
to intrinsic dynamical fluctuations.

What is more remarkable is that we have observed in
our simulations that the deposited energy E(r, t) is
homogeneously distributed all the way to the boundaries,
independently of where input energy is introduced. Sup-
pose we drop more energy near the origin and less near
the boundaries. The system, nevertheless, organizes it-
self to be homogeneous and isotropic, on the average.
Homogeneity and isotropy are achieved by activating
nodes more or less frequently, responding to possible in-
homogeneous input energy. A color rendering of a criti-
cal state is given in Fig. 2.

In the following we derive the distribution law of
activation-cluster sizes. We ask the following question:
If we drop an input-energy unit at a given node, say at

FIG. 2. A snapshot of the energy distribution on a 60&60
grid. The four peak values in Fig. I, in ascending order, are
represented by blanks, and green, blue, and red asterisks, re-
spectively. The red nodes are most likely to "fire": They will

be activated by a small provocation (energy from input or
neighbors). The blue ones can be considered "weak nodes" in

conducting activation: Two or more firing neighbors are need-
ed to "ignite" one such node. The green ones and blanks are
weaker still. There are not as many blanks as one would
expect —this is because when a node has fired, it may receive
"backfiring" from its neighbors, so it rarely empties its content.
Thus it is hard to identify avalanches that have just occurred
and the potential ones from this picture. To illustrate the isot-
ropy and homogeneity of the critical energy distribution, we
have purposely introduced input energy only on half of the
grid —it is the reader's guess which half.

the origin and at time t =0, what is the expected energy
(it does not necessarily include any of the input energy)
that has flowed into a node at a distance r away from the
input as the consequence? Denote by 5(r, t) =(E(0,0)
XE(r, t)} this correlated, or transferred energy, where

) is the sample average, over activation clusters of
all sizes. Suppose that the system is already critical; the
input energy then has to be dispelled to the boundaries
via activation. Since energy transfer in our model is by a
local isotropic mechanism, and since the transferred en-
ergy S(r, t) is averaged over activation clusters of all
sizes, it must satisfy the relaxation equation, in a contin-
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uum notation:

dS(r, t)/dt =aS(r, t)+S (r)S(t),
where 6 is the Laplacian. (This is to be compared with
the discussion below for the evolution of a single clus-
ter. )

The average total new energy received at the node r,
due to the input event, is proportional to T(r)
=fo dtS(r, t). It satisfies the static equation: AT(r)
= —6 (r). Traditionally, j = —VT is called the energy
current; we can express the energy conservation law as

f j.da =1, where da is the (d —1)-dimensional surface
element. At large r we have the solution T—1/r "
from which we obtain the outgoing, radial component of
the energy current j, = —dT/'dr —1/r

Denote by D(r) the distribution function of activation
clusters of the hnear size r. Energy can be transferred to
the node r only through activation clusters that contain
both the input node and the node r. Therefore, all the
activation clusters of linear size equal to or greater than
r contribute to the received energy T(r). We obtain the
relation T(r) =f„dr'D(r'), where we have assumed
that each activation cluster contributes equally to T(r).
In other words, each activation cluster locally transfers
an equal amount of energy per unit volume, no matter
how large its size (& r). We have BT/Br = D(r), or-
from the above discussion we obtain the activation-
cluster distribution function D(r) —1/r ' . Note that
for d =1, we have D(r) —1, so clusters of infinite linear
size can occur with a probability of 1.

We assume that the activation clusters are compact
objects with rough boundaries, more like the Eden clus-
ters than fractals. This assumption is supported by
direct inspection of simulation patterns, and by the previ-
ously measured fractal dimensions ' which are very
close to the compact dimension d. When an activation
cluster is advancing, it is unlikely to leave large regions
behind unaffected, in contrast to diffusion-limited-
aggregation fractal clusters where long-range forces are
present. In Fig. 2 one expects that activation clusters
will most likely develop along connected red nodes.
However, the "weak nodes, " such as the blue or green
ones, are also able to conduct activation when surround-
ed by other "firing" nodes. There are, of course, small
patches (candidates are blanks, green, and even blue
nodes) left inactivated —but this is unlikely to give rise
to fractals. This is consistent with our previous assump-
tion that activation clusters transfer local energy homo-
geneously.

Denote now by s the size of an activation cluster; using
the relations s =r (compactness) and D(s) =D(r)dr/
ds, the above distribution law can be rewritten as
D(s) —I/s', r =2(1 —1/d). This exponent r can be
readily compared to the reported numerical results,
~—1 for d=2, and 1.33 for d=3. Our analytical pre-
diction is in good agreement with these numerical re-

suits.
Next we study how a single activation cluster evolves

in time. Around the average homogeneous energy E,
there are regional Auctuations. The reason for a single
activation cluster to occur is that excess energy, when

perturbed by an input energy, must dissipate. In general
we expect that larger clusters need more time to grow.
This expressed by the dispersion relation t —r', where r
is the linear size of the cluster and z is the dynamical ex-
ponent. We can regard an activation cluster as the trace
of t consecutive activation fronts when they sweep over a
region of linear size r. If these activation fronts were
free to evolve and isotropically diffuse through space, we
should expect the diffusion behavior t —r . There is,
however, an effective repulsive interaction ' among these
t activation events: Nodes that are activated previously

by the very same activation cluster are less likely to be
activated again, since they are just relaxed. Though
backward propagation is allowed and observed in our
simulations, the activation fronts prefer the "fresh"
nodes. '' This repulsive interaction among the t consecu-
tive activation events drives the cluster to expand out-
ward, faster than would be implied by diffusion alone.

Denote by p=t/r the density of the activation fronts
within the volume V=r". Since the repulsive interaction
is local, we postulate that the effective expansion poten-
tial is U=Vp, in analogy with polymer studies. ' The
outward velocity dr/dt should be equated with the driv-

ing force —BU/Br. ' The above relation leads to r —t",
v=3/(d+2), or z =1/v=(d+2)/3. This result is also
in reasonable agreement with BTW's measurements (for
d=2, z =1.29; for d=3, z =1.70). The above predic-
tion indicates that the upper critical dimension is d, =4.
Above d, the local repulsive interaction has negligible
effect, since the expansion rate cannot be smaller than
that of diA'usion; i.e., for d ~ 4 we have z =2.

It may seem that the activation fronts are a kind of
branching true self-avoiding walk (TSAW). ' However,
there is an important qualitative difference: In the
TSAW the repulsive potential is Vp rather than Vp .
This is because the TSAW has only a single active site,
the walker, which can terminate when crossing the previ-
ously visited sites, whereas the activation fronts in our
model can branch indefinitely. The above discussion is

not sensitive to what shape and size the activation fronts
may have.

In conclusion, we have analyzed a continuous-energy
model, which is a variant of the BTW model of SOC
phenomena. We find that energy is concentrated around
a few discrete values. In dynamical equilibrium states
there is a well-defined critical stored energy and it is iso-
tropically, as well as homogeneously, distributed in

space, even when energy input is not.
Critical phenomena have one characteristic in com-

mon: correlation lengths diverge at criticality. It is in-
structive to highlight how (diverging) long-range corre-
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lations arise in our model. Energy transfer, after being
averaged over avalanches of all sizes, is via diff'usion.

Energy received at a large distance r away from an input
node decays following the power law T(r) —I/r . It
would be a rather trivial scaling, or long-range correla-
tion, if energy transfer were by smooth, continuous
diA'usion. The curious feature of our model is that ac-
tivation on a distant node is only occasional: either it
happens, when homogeneous energy per volume will be
transferred, or not. A large avalanche is bound to hap-
pen, as required by conservation, to supply energy on a
distant node, not matter how small the amount. The
above power law by diA'usion dictates how often they
should occur —this leads to the distribution function
D(s).

We use the fact that when a single activation cluster is

evolving in time, the previously activated nodes are less
likely to be activated again, to deduce a local repulsive
interaction for the t consecutive activation events. Note
that the above dispersion relation is the same as that for
a self-repelling chain, ' the reason being that in both
cases there is the same local repulsive interaction, despite
their apparently diA'erent geometries. The analytical
predictions for the above two exponents (other exponents
are related to these two, plus the compactness assump-
tion) agree reasonably well with the results of previous
simulations. '
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