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Evolution of a Lamellar System with DifFusion and Reaction: A Scaling Approach
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(Received 5 April 1989)

We study, by means of computer simulation and scaling analysis, the time evolution of one-dimen-
sional arrays of reactive lamellae described by various initial striation thickness distributions. An
infinitely fast reaction 4+8 2P occurs at the junctures of the lamellae. As the reaction proceeds thin
striations are eaten by thick neighboring striations altering the distribution. The system converges to-
ward a universal striation thickness distribution.

PACS numbers: 66.30.Ny, 02.60.+y, 05.40.+j, 05.45.+b

Complex lamellar structures, consisting of stretched
and folded striations, are generated during the mixing of
fluids with similar properties. A particularly striking ex-
ample involves the stretching and folding of passive
tracers in two-dimensional chaotic Aows, such as in the
experiment reproduced in Fig. 1. ' In many cases of in-
terest, such as combustion or polymerizations, the stri-
ations interdiffuse and undergo complex chemical reac-
tions, and the central question is to predict the value of
the overall rate of reaction. The simplest types of analy-
ses assume that the concentration of reacting species is
uniform; however, in the case of very fast reactions, dif-
fusion dominates the picture, and it becomes necessary
to account for fluid mechanical mixing and the distribu-
tion of striations in an explicit way. One possibility is to
use a lamellar model: At time t =0 the reactants are
arranged in a one-dimensional lamellar structure (bot-
tom of Fig. 2) which is generated by the fiuid mechanics.
Fluid motions stretch the striation s, reducing the
diffusional distances and increasing the contact area for
interdiffusion; in the case of infinitely fast reactions, the
reaction occurs at the interfaces between striations.

Until now analyses considered situations with the
same thickness; in fact, the problem consisting of distri-
buted striation thicknesses was considered nearly intrac-
table. In this Letter we present the results of a simple
scaling analysis and the confirmation of the predictions
by means of a novel numerical procedure capable of han-
dling a large number of striations (details on the numeri-
cal method as well as additional results will be presented
at a later date ). We believe that this is the first time
that scaling behavior has been observed in the context of
this class of diffusion-reaction systems. Other diffusion-
reaction problems leading to scaling solutions have been
studied by Kang and Redner; in these cases, however,
the systems were "well mixed" to start with and became
unmixed as a result of magnification of concentration
Auctuations.

The system consists of two reactants, A and 8, dis-
solved in a common solvent, and placed in initially alter-
nate striations in a lamellar system (Fig. 2). Both reac-
tants diffuse to the interfaces between the lamellae,
where they undergo an infinitely fast reactions. The
diffusion coefficient of both species, D, is the same
(D=l). The thickness of the striations is distributed;
the striation thickness distribution (STD) is given by
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FIG. 1. Photograph showing typical structures produced by
chaotic mixing in a cavity flow apparatus under creeping flow
conditions (Ref. 1). Two fluids of about the same viscosity and
negligible interfacial tension are mixed by moving the top and
bottom walls of the cavity in a time-periodic fashion. A lamel-
lar structure is generated, composed of thousands of striations
of distributed thicknesses. The line represents a cut across the
striations such as the one represented at the bottom of Fig. 2.
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FIG. 2. Evolution of a lamellar system; the initial condition

corresponds to the bottom of the figure. The conversion A in-
creases linearly along the vertical axes, A =0 at the bottom and
h =0.80 at the top. As A increases, thin lamellae are eaten by
larger neighbors, the total number of lamellae decreases, and
the mean thickness 5 increases.
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f(s, t), that is, the frequency of occurrence of lamellae of
thickness s at time t.

The initial STD, f(s,0) =dn/ds, where dn is the num-
ber of lamellae of thickness between s and s+ds, is the
main parameter in the system. From the prescribed
f(s,O), the thickness of the lamella are generated as fol-
lows. If each lamella is identified in increasing thickness,
the thickness increment between two adjacent size lamel-
la is given by

ds dn/f(s, O) =1/f(s, O),

where we take dn—= 1. We obtain a set {s] of values of s
by recursive application of Eq. (1), where s E IR. How-
ever, because the measure of the thickness of a lamella is
the number of equally spaced nodes used to represent it
in a finite-difference discretization, only integer values of
s can be allowed. We substitute each value of s in {s] by
its nearest integer s', obtaining a new set {s'j with
s'G Z+. The continuous distribution f(s,O) is approxi-
mated by a discrete distribution n(s', 0), obtained by
counting the number of lamellae of thickness s' that are
present in {s']. We place additional requirements on the
initial distribution: gp n(s', 0) =600 lamellae, and

gp s'n(s', 0) =150000 nodes. The initial value of the
mean striation thickness, S(0), is therefore S(0)
= [gp s'n(s', 0)]/[gp n(s', 0)] =250 nodes. We gen-
erate two identical lists, one for lamellae of A, {s~], and
the other for lamellae of 8, {sg, thus making the total
number of lamellae equal to 1200 and the total size of
the system equal to 300000 nodes Each .list is random
ly reordered. Subsequently, we build a master list by
taking the first lamella from the A list, then the first
lamella from the 8 list, then the second lamella from the
8 list, and so on. In this way, the thicknesses of the
lamellae obey f(s,O), but the thicknesses of neighbors
are uncorrelated. At time t =0, nodes in 2 lamellae are
assigned the values of concentration c~ =1, c~ =0, and
nodes in 8 lamellae are assigned c~ =0, e~ =1. The
amounts of 2 and 8 are identical in the initial distribu-
tion; moreover, due to the stoichiometry of the reaction,
they remain equal to each other for all times.

The core of the simulation consists of solving the dif-
fusion equation

8e/Bt =Dr)'c/Bz', (2)

(3a)

(3b)

where c(z, t) is the concentration of either A or 8 at a
given position and time, and z is the spatial coordinate in

the direction transverse to the boundaries of the lamel-
lae. An infinitely fast reaction occurs at the interfaces
between striations [i.e., s /D)) (characteristic time of re-
action)]. Under these conditions, the reaction is actually
a boundary condition for each lamella and at every
boundary,

cg =ca =0,

The main difficulty is that, due to the reaction, the
boundaries between lamellae move, the thicknesses of the
lamellae change, and the implementation of an effective
discretization scheme becomes rather complicated. In
order to overcome this problem we use the following ap-
proach, based on the fractional-step method: Given the
concentration field at time t, we solve the diffusion equa-
tion for the entire domain for t'=t+h, t without consid-
ering the reaction [we use an explicit, constant-incre-
ment, finite-difference scheme with a coefficient a =Ddt/
(Az) =1/6; for this value of a the error terms are fourth
order in dz ]. After that, we compute the effects of the
reaction by simple bookkeeping: If h, t is small enough,
the violation of the simultaneity of the diffusion and the
reaction processes is relatively unimportant. Boundaries
are the locations where c~ =cg =0, and their positions
are automatically generated by the algorithm.

We check the performance of the code in three ways:
First, we compare the values of the concentration gra-
dient of A and 8 at opposite sides of each boundary.
The boundary condition (3b) is closely verified; the rela-
tive differences in the values of the concentration gra-
dients of A and 8 are smaller than 0.01 for all lamellae
larger than 20 nodes. Second, we simulate a constant-
thickness system (all the lamellae are of the same thick-
ness), for which a series solution for the conversion as a
function of time is available. We found an excellent
agreement between both methods; the relative errors in
the conversion 4' [ = 1 —fc(z, t)dz/ f c(z,O) dz] are
smaller than 0.001 for all values in the interval 0&%
& 0.95. The third test consists of computing the evolu-

tion of the thickness of a striation surrounded by much
larger neighbors. A comparison between the analytical
solution and the simulation show that the relative errors
in thicknesses are smaller than 0.01 for all lamellae with
initial thickness larger than 20 nodes.

The dispersion in striation thickness has a deep impact
on the dynamics of the system. Figure 2 shows the time
evolution of a typical system. The figure is created as
follows: We take snapshots of the system at different
values of X, "cut" thin horizontal strips from each
snapshot, and pile the strips up in increasing conversion
order. Horizontal cuts of Fig. 2 correspond to states of
the system at different conversions (times). The conver-
sion X increases linearly along the vertical axis. As X in-
creases, the total number of lamellae decreases, and the
mean striation thickness S increases. At the top of the
figure, corresponding to A =0.80, only 16 of the original
200 lamellae survive.

The results presented in this paper correspond to a
selection of three extreme cases of initial conditions: A
random initial STD in which all thicknesses have the
same frequency, a normal initial STD with standard de-
viation of 125 nodes, and a linearly decreasing initial
STD. We run ten simulations for the random and nor-
mal cases, and forty for the linear case. Different simu-
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lations corresponding to the same initial STD have the
same list of thicknesses js'l ordered in a different ran-
dom sequence. The results we present in this Letter are
the average of all the simulations for each initial STD.

Figure 3 shows that the STD suffers profound changes
as X increases (and t increases). Thin lamellae are eaten
by thick lamellae, their frequency diminishes, and a
linear frequency region develops for small values of s.
Large lamellae are generated in the process and the dis-
tributions develop a tail in the large-s region. In spite of
the differences in initial conditions, the STD in all sys-
tems evolves into a characteristic shape that is shown in

Fig. 3. More extensive calculations with other initial
STD's show the same, mildly peaked shape at moderate
to large conversions.

The implication of these results is that the system
evolves into a particular STD regardless of the initial
conditions. If this is indeed true, as systems with dif-
ferent initial conditions achieve this distribution at
diff'erent values of conversion, time, and mean striation
thickness, it then follows that this universal STD should
exhibit time invariance in scaled form. We make the hy-
pothesis of the existence of a universal, time-invariant
scaling solution for the STD at moderate to large conver-
sions. This hypothesis can be tested by using the same
scaling techniques that have been extensively used to de-
scribe critical phenomena ' and aggregation process-
es. '" We postulate that

~'f (s, r ) =g(s/5 (r )), (4)

where g(y) is the scaling solution and y=s/S(t) is the
scaling argument. Because lamellae grow at the expense
of their neighbors, the total size of the system, M

s (striation thickness)

FIG. 3. Evolution of a system with a linearly decreasing ini-
tial striation thickness distribution (STD). The system is ini-
tially composed of 1200 lamellae with thicknesses distributed
with a frequency f(s,0) =a —bs, where a =3.2386 and
b =0.004266. The STD, which is shown for X(r) =0, 0.05,
0.20, 0.35, 0.45, 0.55, and 0.65, evolves into a mildly peaked
shape that also appears at moderate to large X for many other
initial STD's.

y = s/s(t)

FIG. 4. The scaling behavior that is present in the evolution
of the STD. The distributions in Fig. 3 are plotted as g(y)
=s f(s, t) as a function of y=s/S(t), where S(t) is the mean
thickness at time t. All curves collapse into a single, master
curve, except those corresponding to very low conversions
(%&0.35). The master curve is the scaling solution for the
STD. The large amount of scattering that occurs at large con-
versions and at large values of s/S(r) are due to the small
values of f(s, r) under those conditions. The results are the
average of forty simulations.

[=fo sf(s, t)dsl, is constant, and it follows that 8=2.
Figure 4 shows the scaled distribution corresponding

to a system with a linear initial STD, for different values
of X in the interval X =0 to X=0.85, and 0=2. As the
conversion X increases, the scaled STD indeed converges
toward a master curve, becoming time invariant. The
collapse of the data is good; a similar type of collapse is
obtained for the other two initial conditions: For
X & 0.35, any individual curve overlaps the master curve,
except in a narrow region at y=1. For X&0.5, all
curves lie nearly on top of each other. The scattering is
due to the finite number of lamellae considered; it is
larger at high conversions and also at large values of y,
due to the progressive thinning of the data that occurs at
larger values of X and s. As conversion increases, the
number of surviving lamellae decays very rapidly. Simi-
larly, we can only have a few very thick lamellae at any
given time; the frequency f(s, t) is very small for large
values of s. The scaling solution is the same for the dif-
ferent initial STD's. Figure 5 shows a scaled STD corre-
sponding to each of the initial distributions. The agree-
ment between the curves is very good, demonstrating the
universality of the scaling solution.

An exception to this scaling is when all the striations
have the same thickness; in such a case the boundaries
do not move. The uniform-thickness case is a fixed point
of the STD; it remains invariant for all times. However,
it is an unstable fixed point: A small amount of disper-
sion in the striation thickness will produce imbalances
and the thicker lamellae in the population will eventually
eat the thinner ones, producing more dispersion in the
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zations. However, before such questions can be ad-
dressed, we should probably consider simpler issues.
One such possibility is incorporating fluid mechanical
eA'ects via stretching of the striations and warped times;
another is whether or not the scaling behavior persists
when the intrinsic speed of the reaction is finite. Work
in these directions is in progress.

This work is pertinent to projects supported by the
Department of Energy, Office of Basic Energy Sciences,
and the Air Force Office of Scientific Research. The use
of the Convex C210 was supported by the Materials
Research Laboratory of the University of Massachusetts.

FIG. 5. The scaled STD's for a system with a random initial
STD, X=0.7, a system with a normal initial STD, X=0.8, and
a system with a linear initial STD, X 0.55. The curves are al-
most indistinguishable, demonstrating that the scaling solution

g(y) =s'f(s, t) is independent of the initial conditions.

STD.
The scaling behavior has important consequences on

the overall dynamics of the process. Detailed calcula-
tions show that two different, well characterized kinetic
schemes describe the behavior of the system at short and
long times. The short-time regime is dominated by dif-
fusion in length scales much smaller than the mean
thickness, and therefore it is relatively insensitive to the
initial distribution in the striation thickness. The long-
time regime, which is fully determined. by the scaling be-
havior, is universal. A matching of the two regimes al-
lows the prediction of the system for all times.

All these eA'ects are magnified if the reaction leads to
the formation of a product which is nearly impervious to
the diA'usion of the reactants, as in the case of polymeri-
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