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Model of Phonon-Associated Electron Tunneling through a Semiconductor Double Barrier
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We propose an approach to study one-dimensional electron tunneling in an arbitrarily shaped barrier
in the presense of electron-optical-phonon scattering. An independent-boson model is used for the
electron-phonon scattering. Our result for a double-barrier structure shows the occurrence of phonon-
assisted resonant tunneling.

PACS numbers: 73.40.Gk, 73.50.Bk

Since the pioneering work of Esaki and Tsu, ' there
has been great interest in double-barrier resonant tunnel-

ing devices. One of the important problems in the study
of these devices is the effect of electron-phonon scatter-
ing on the tunneling current. Recently Goldman, Tsui,
and Cunningham have found the existence of optical-
phonon-assisted resonant tunneling in the valley current
region in a double-barrier structure. This effect was
theoretically confirmed by Wingreen, Jacobsen, and Wil-
kins and others. In Ref. 3 the problem of phonon-
associated electron tunneling through a barrier has been
converted to that of scattering of electron in a single res-
onant state with phonons.

The quantum tunneling with dissipation and its correct
theoretical treatment is an interesting issue. As pointed
out by Gelfand, Schmitt-Rink, and Levi, the unitarity
condition (or the current conservation) leads to a feed-
back mechanism by which inelastic scattering processes
change the probability of elastic scattering. This feed-
back mechanism is beyond the scope of simple perturba-
tion theory. Several works ' have been presented on
different methods of solving this problem.

In this Letter we present the first calculation of an
optical-phonon-associated electron tunneling through an
actual double barrier. Using a solvable model for the
electron-phonon interaction we propose an approach to
calculate the 1D electron tunneling with dissipation in an
arbitrary barrier, and indicate how the boundary condi-
tions uniquely determine the transmitted current and the
reAected current of an electron. Our approach also
clearly shows why phonon-assisted resonant tunneling
appears when the electron injects at sideband E+'neo (E

is the energy level of elastic resonant tunneling, m is the
energy of optical phonon) in a double-barrier structure.

An incident electron from the left lead (in region I,
x (0) enters the barrier region II and is scattered by
phonons (between x =0 and d), and arrives at the right
lead (in region III, x & d). The Hamiltonian of the elec-
tron-optical-phonon interaction has the form

H;„,= QM(q)e' '
e '"'aq+ H.c. H(x)B(d —x),

q

with aq and aq, respectively, the phonon annihilation and
creation operators, M(q) the electron-phonon scattering
matrix, and R the electron position. 8(x) is the Heavi-
side step function. In the following we use a model that
replaces e'" by 1 in H;„t. This model is similar to the
independent-boson model '' used to describe electron-
phonon scattering. Using this model, the Schrodinger
equation for a one-dimensional electron in a barrier with
arbitrary shape, Vo(x), in region II is given by (itt =1)

It
1 g 1 g ll

t3t 2 Bx m(x) 8x

+ [V (x) + Ve i(et+ V tetra&] II

where V=+qM(q)aq and V =PqM*(q)aq. Here
m(x) is the effective mass of the electron. In regions I
and III the electron is in free motion. By neglecting the
effect of the electron-phonon interaction on the phonon
system, we assume phonon variables are in free motion
and in equilibrium with a heat bath. Equation (1) is se-
parable in space and time. The general solution of Eq.
(1) can be written as

ttt" (x, t) =exp —e ' ' — e'"' dE'[AF tttg (x)+BF tttF (x)]eV; I V;„I
CO CO

(2)

where tttE (x) and pE (x) are two independent eigenfunctions at eigenvalue E' for the equation without phonons. The
coe%cients AE and BF are constants, which will be determined by the boundary conditions. We assume the electron in-
jects at energy E, with time-independent amplitude, 4 '" (the steady-state case). In this case only components of ttr(x, t )
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with energy E+nro (n =0, ~ 1, . . . ) exist. In region II,

y" (x, t) =g yk'+, (x)exp[ —i(E+nto)t],

with

(V/~) k ( V1'/~) j—n+k
y"+. ( )=gg „. [A,"y,'( )+8,"y,'( )], (3)k! j—n+k !

where the subscript index j corresponds to the energy E+je (j=0, + 1, . . . ), k ~ 0, j n—+k ~ 0. To obtain Eq. (3)
we have used e + =e"e e '~ for phonon operators. It is easy to see that the magnitudes of 4„"and 8„"have
the order of

~ V~ ~" ~. Assuming the electron-phonon interaction is weak, a cutoff of n
~

and ~m ~ up to N will ensure
the results for the transmitted and the reflected current with an accuracy up to

~
V . In Eq. (3) terms for the nth

branch should be maintained to the order of ( V( ~" ~. For example, for computing the current with an accuracy up
to

~
V ~, we should keep the following terms:

yk. + (x)=—[Ao'yg(x)+Bo'yo(x)]+lA+(y+)(x)+8+)y~)(x)],V (4a)

[Ao'yo(x)+Bo'yo(x)]+ —[A'—'(y'-((x)+8'-'(yb ((x)]— [A+)y+)(x)+8 j".)yb+)(x)],
CO CO N

(4b)

y~ .(x) = [A(~)'yg(x)+Bot'gob(x)]+ [A ",y' ((x)+8",y' )(x)] . (4c)

In the incident channel it is necessary to deep the terms yP —
~
V ~, which are related to the coherent double phonons

process, since the cross term of
~

yb. + yp ~
contributes the lowest order of phonon effect to the current in the incident

channel. The physical requirement is that only the reflected wave exists at region I except for the incident wave,

y'(x, t) =A'"exp(ikox iEt)+ QB„—'exp[ —ik„'x —i(E+nto)t],

with 8„' the amplitude of the reflected wave. Also, only the transmitted wave exists in region III, y"'(x, t) -A„'"
&&exp[ik„'"x —i(E+nco)t], with A„"' the amplitude of the transmitted wave. Here k„=[2mL(E+nro —Vo)]'t, with

mL the effective mass of electron in L region and Vo the flat potential level in L region. Using the continuity condition
of the wave function and its derivative, we obtain the following equations:

gf(j n)[A Il~a(P)+8tl~b(P)] A in' +BI
J

1 gf(j n)[A "p—"(0)+8"p' (0)] = ik„'(A'"8 —8')1

m)((0) t
' ' ' ' m(

gf(j n) [A —"p'(d) +8 "p (d)] =A "'exp(ik„'"d)
J

1 g f(J' — ) [ "p"(d)+8"p' (d)] = ik"'A "'exp(ik'"d),1

m (t(d) J J t7 fl

with

(V/ )k ( VT/~) j n k+
k! (j —n+ k)!j—n

and &J" the derivative of pg. Equation (5) consists of a

group of coupled equations through which components of
the wave function in different energy channels couple
with each other through phonon emission and absorp-
tion. We can solve Eq. (5) to determine A„" and 8„",
and then obtain 8„' and A„"'. By use of a serial substitu-

tion method to solve these equations, i.e., step by step to
(0) (] ) (Z) (2) (3) (4)obtain y~, y~-+ „, y~, y~+ 2„, y~+ „,y~, . . . , where

the superscript index (n) corresponds to the term
—

~
V ~", the order of phonon operators in each term is

determined. The transmitted current at energy E+nco is

J„"'"'=(k„"'/m~~t)(A„'" A,"'), and the reflected current
at energy E+nto is J„"'"=(k„'/m~)(B„' 8„'), where (. )

means the average over the phonon assemble (below the
bottom of the barrier k„becomes imaginary, and
J„"'"'~""~is zero). Assuming phonons are in equilibrium
at temperature TL, we have (V V) gq ~ M(q) ~ nq and
(VV ) =Pq

~ M(q) ~
(I+nq), with the phonon occupa-

tion number nq= [exp(ro/ksTL) —1] '. Also, we can
calculate the average value for the assemble of a product
of Vs and V 's. The transmission coefficient is given by
T&„„,=(g J'"'"')/J'" with J.

'" (ko/m~) ~A'"
~

. Cur-
rent conservation is ensured, namely, J'" = p„(J„"'"'
+Jref)

We emphasize that the above boundary conditions
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uniquely determine the solution of an electron tunneling
wave function in the case with dissipation as well as in
the case without dissipation. This key point was not
properly considered in some previous works. In Ref. 8,
for example, the wave function is described by
y=e ' ', where so is the action without phonons and

I (SP+S l )

sl is the correction due to the phonon effect. In the
equation for sl the authors neglect the terms ri sl/8x
(WKB) and (Bsi/Bx) (-

i Vi ), and reduce the equa-
tion for s1 to a first-order differential equation to x.
They then arbitrarily impose the left-hand boundary
condition sl(x=0, t) =0. This forces sl to be zero for
x & 0, so that one finds the incorrect result that there is
no phonon correction to the reflected current. This
correction is needed to obtain the proper physical results
on the right-hand side. By use of the WKB method with
the neglect of the (tls1/Bx) term they have lost one of
the two solutions, and hence cannot impose the correct
boundary conditions at both sides. ' Moreover,
(a. , /ax)' is of order i Vi and must be kept to retain
this accuracy in the transmission, as discussed before.

It is obvious from our approach that a process with
emission (or absorption) of n phonons must involve the
electron eigenfunctions up to the E ~ neo sidebands.
Therefore, if a resonant state in a double-barrier struc-
ture appears at energy level E in the case of elastic tun-
neling, a phonon-assisted resonant tunneling can appear
when electron injects at energy E+nm, since the reso-
nant eigenfunctions p~(x) and p~(x) are included in the
expression of the wave function of electron injected at
E+nm through electron-phonon coupling. We have cal-
culated the transmission of electrons in a double-barrier
structure. Since we are interested in the phonon effect
inside the double-barrier region (as in Ref. 3), electron-
phonon scattering is considered only inside the double-
barrier region (although our approach allows the region
II beyond the double-barrier region). The calculation is
made with accuracy up to i Vi (one phonon process).
By neglecting V and V into Eq. (4b), we can obtain the
elastic solution y~ at E channel. Substituting y~ into
Eqs. (4a) and (4c), and solving Eq. (5) at E+ ro chan-
nels, we obtain the J'gl' "'", which represents the pho-
non effect at inelastic channels. We then go back to Eq.
(4b) to calculate yE (—i Vi ), which represents the
feedback effect of inelastic scattering on the elastic chan-
nel. Therefore, the transmitted current and the reflected
current at each energy channel are obtained and our nu-
merical results indicate that current conservation is ex-
actly satisfied. In Fig. 1, we plot the total transmission
coefficient of electron Tt„,. „, in a square double-barrier
structure as a function of the energy E of the incident
electron. The structure parameters are for a GaAs well
sandwiched between two A103Ga07As barriers. ' The
optical-phonon energy co is 36.2 meV. For comparison
with Ref. 3, the electron-phonon coupling constant is
taken as g =—Pq(iM(q) i/co) O. l. At zero tempera-

'/o
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ture, only a phonon-assisted resonant peak appears at
E+co, since only emission of phonons is allowed. At
TL =300 K peaks at both E ~ ru appear. The amplitude
of the resonant peak at incident energy E decreases when
electron-phonon scattering is included. The effects of in-
elastic scattering alone at Tz =0 K are displayed in
curve C of Fig. 1, where peaks occur at incident energy
E+ ru and E. From Eq. (4c), it is clear that the inelastic
peak can occur when either po(x) or p —1(x) is an elastic
resonant eigenfunction. In Fig. 2, we plot the transmis-
sion coefficient Tt„„,as a function of the potential drop
of the applied electric field, V„ in the same structure as
that for Fig. 1, when incident electron is at energy Eo
=70 meV. We see the phonon-assisted resonant peak
appears at the potential drop V, =108 meV, at which an
elastic resonance occurs at energy Eo —m. The coupling
constant g=0.03 is more realistic for a GaAs-A1GaAs
structure; Fig. 2 shows that the peak position at g
=0.03 and 0.1 are the same, but the amplitude of the
phonon-assisted resonant peak decreases with decrease of

In conclusion, based on an independent-boson model

FIG. 1. The transmission coe%cient, Tt„„„asfunction of
energy of incident electron E in a GaAs-A16aAs double bar-
rier including electron-optical-phonon scattering. We use the
electron eAect&ve-mass parameters: mG, As =0.067mo, mAlGaAs
=0.092mo, with mo the free-electron mass. The mass of elec-
tron in the lead regions is assumed as mG, A, . The energy of the
phonon is co =36.2 meV. The solid curves include the phonon
eA'ect. The dotted curve omits the phonon eff'ect. Curve la-
beled A applies at room temperature, that labeled B applies at
0 K. Curve C (+) represents the contribution to Tt„„,of the
transmitted current in the E —co channel at TL =0 K.
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sured. Our results for double-barrier tunneling show the
presence at the sidebands of phonon-assisted resonant
tunneling, which has been shown in experiments. Our
model is good for phonons with long wavelength, but can
only qualitatively describe the properties of a realistic
device, where the three-dimensional electron-phonon in-
teraction, statistics, and screening eA'ect of electrons
should be taken into account.

The work at City College of the City University of
New York was partly supported by the U.S. Army
Research 0%ce and the U.S. Department of Energy.
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for electron-phonon interaction, we have proposed an ap-
proach for the study of phonon-assisted electron tunnel-
ing through an arbitrary barrier. The algebra in this ap-
proach is simple and straightforward. The correct
boundary conditions and current conservation are en-

va (mv)

FIG. 2. The transmission coefficient of electron, T&„„„in a
GaAs-A1GaAs double barrier as function of potential drop of
an applied electric field, V„when the electron-phonon scatter-
ing is included. The incident electron is at the energy level
ED=70 meV. The double-barrier structure is the same as that
of Fig. 1. The solid curves include the phonon effect. The dot-
ted curve omits the phonon effect. Here curve C refers to cal-
culations with coupling constant g =0.1 and curve D refers to
g =0.03.
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