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We report measurements of the superfluid density of He confined between two Si wafers. These are
the first measurements of helium confined in a sufFiciently well-defined planar geometry to show a cross-
over from three-dimensional-like to finite-size to two-dimensional behavior. Data for confinement in

0.106-, 0.509-, 2.8-, and 3.9-pm-thickness cells are analyzed for scaling with the exponent of the bulk
correlation length, v. We find that this scaling does not work: An exponent different from v is required.
We discuss these results in light of finite-size scaling predictions and earlier measurements.

PACS numbers: 67.40.Hf, 05.70.3k, 65.40.Hq

Understanding the behavior of finite systems is impor-
tant in many areas of physics, both in theory and experi-
ments. In theory, one often does numerical calculations
involving a finite system and extrapolates to the thermo-
dynamic limit. In experiments, one is often faced with a
situation where one is dealing with a sample which is

homogeneous only over dimensions which are compara-
ble in size with an important length scale. For critical
behavior, near a second-order transition, the growth of
the correlation length produces a "rounding" of the
critical-point behavior if the sample dimensions are too
small. If the sample is sufficiently well defined, one can
observe dimensionality crossover from three dimensions
(3D) to 2D, 1D, or OD. Bridging these limiting behav-
iors is a crossover region which is expected to be de-
scribed by finite-size scaling theory. '

In the case of liquid helium in particular, the 2D be-
havior of the superAuid density of thin films has been
studied as a realization of Kosterlitz-Thouless behav-
ior. There are no data on the superAuid density prior
to the present work which determine the scaling with size
for helium in a planar geometry. Earlier work has been
on helium confined to channels where the crossover is to
1D. Previous work with helium films has yielded only
the shift in transition temperature with film thickness,
but not the finite-size aspects of a particular thermo-
dynamic response. An exception to this are the data on

specific heat of films. These, however, are only for
thicknesses up to 53 A. ' Another distinguishing feature
of the present work is the fact that the helium is com-
pletely confined by rigid surfaces as opposed to the usual
situation with films.

The physics we want to address with our experiment is
in regard to the finite-size behavior of the superfluid den-
sity near the transition. Finite-size scaling of a system
near a critical point has recently been reviewed by
Barber. For helium in particular, one may say very
simply that if d is the smallest dimension of uniform

[1 f(d't )1,— (1)
p p

where p,b/p refers to the unconfined, bulk system. One
must have f(~) =0; and, if this equation is to apply up
to the point where p, vanishes, then f(d t, ) = 1 for cross-
over to 1D. For crossover to 2D, one might expect

T, 2m kg
lim f(d t) =1-

T= T; dpsb ~A ' (2)

if one expects to have the universal jump in p, . ' The
scaling in Eq. (1) implies a shift equation for the transi-
tion temperature, d t, =const. In this Letter, we will

concern ourselves mostly with Eq. (1). We will limit our
discussion of the 2D regime to some qualitative remarks.

The design of the experimental cells used in our work
is shown in Fig. 1. These cells consist of two Si wafers
0.025 cm thick and each polished on one side. One
wafer is patterned lithographically to have a thin Si02
border of 0.4-cm width, and a triangular array of Si02
supports 0.08x0.08 cm in cross section. These are

confinement, then the thermodynamic response should

depend on the combination of variables d t, where

t =
~

1 —T/T~ ~. One expects 0 ' = v, if the scaling
length is the 3D correlation length, g =got . This kind

of scaling, in fact, seems to fail for a number of experi-
ments in helium. This is most striking for the specific
heat and superfluid density of helium confined to cylin-
drical pores (3D to 1D crossover). Most recently,
Huhn and Dohm' have reported renormalization-group
calculations of the specific heat for 1D crossover. They
have obtained the specific heat for T & Tq and the shift
in the specific-heat maximum which agree with experi-
ments. There are no calculations at present for the
superAuid fraction for the case of 3D to 2D crossover. ''

In the spirit of finite-size scaling we may write the
superfluid fraction of the confined system, p, /p, as
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FIG. 2. Superfluid fraction vs reduced temperature for the
0.519-pm cell. Inset: superfluid fraction and dissipation vs

temperature in 2D region. The dashed lines are the expected
behavior of unconfined helium. The solid line is drawn to guide
the eye.
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FIG. 1. Top: schematic diagram of a silicon cell. Shaded
areas are SiOq. The thickness of the oxide is not drawn to
scale. Bottom: Fabry-Perot interferometer data for 3.9-pm
cell taken at four indicated positions of the cell. From the
maximum we obtain the cell spacing.

spaced at 0.2-cm intervals. Another wafer with a hole
through it (0.02 cm) is bonded to the patterned wafer.
This process involves a chemical bond between the Si
and Si02 which forces the wafers to contour to each oth-
er. ' ' This creates a pancake planar region where the
helium is confined. The oxide thickness of the spacers
and the border determine the cell's smallest dimension.
In the case of cells with spacing ~ 0.6 pm, we can deter-
mine the spacing after the bonding process because the
wafers act as a Fabry-Perot interferometer for wave-
lengths ~ 1 pm where the Si is transparent. A sample
of this diagnostic is shown in Fig. 1. Here an interfer-
ence fringe is obtained with a wavelength scan at four
diAerent radial positions. The maxima yield the cell's
spacing. For this particular cell, the average spacing
over about twenty positions along diff'erent radii is
d=3.93+ 0.02 pm. The worst deviation, + 0.08 pm, is
within 0.5 cm of the center hole where the contribution
to the mechanical response of the oscillator is the least.
The average spacing of the bonded cell should be com-
pared to the oxide thickness measured with an ellipsome-
ter after oxidation, d=3.85~0.04 pm. We consider
this as excellent agreement.

To measure the superfluid mass of helium, the cell is
attached to a beryllium-copper torsional element, thus
forming a high-Q oscillator. This, in turn, is attached
to a therrnostated copper platform. Helium can be con-
densed into the cell through a hole in the torsion ele-

ment. To obtain the superAuid mass, one phase locks the
oscillator at its resonance frequency. From the fraction-
al period change, one can deduce the mass loading due to
the helium. This mass loading changes as the helium
becomes superAuid since, in this case, only the normal-
Auid portion is locked to the oscillator's movement. We
report in this Letter results from four diA'erent cells of
spacing 0.106, 0.519, 2.8, 3.9 pm. These were all made
of 2-in. wafers, except for the 3.9-pm cell, which was 3
in. The fractional change in period due to the helium
ranged from (0.26 to 9) X 10 . Our resolution was typi-
cally 10 -10 of the period which was in the 2-7-ms
range. The oscillators with the cells loaded with helium
had quality factors, Q's in the range of (2 to 8) &&10'.

For two of these cells, 0.519 and 3.9 pm, we were able to
see clearly the crossover into 2D. This is marked by an
increase in dissipation, 1/Q. For the two other cells the
oscillator Q was not high enough for us to see this.

Data of p, /p as function of t are shown in Fig. 2 for
the 0.519-pm cell. For large t these data match the be-
havior of bulk helium, p,q/p=kt (the dashed line).
In the 10 -10 range of t, the data begin to deviate
slightly from this behavior. In the 10 range this devi-
ation is more marked. We identify this latter region as
the crossover to 2D behavior. The 3D correlation length
is about 3 the spacing of the cell at t = 10 . The 2D
region is shown on a linear temperature scale as the inset
in Fig. 2. Here we also plot the dissipation of the heli-
um. We see that this peaks where p, /p has a more
abrupt deviation from 3D behavior. The dissipation in
the 2D regime comes from the mechanism of vortex-
antivortex unbinding. ' It is tempting to identify the
"break" in the p, /p curve as the static Kosterlitz-
Thouless jump at the 2D transition. However, this is not
correct for these data. A more careful dynamic analysis
which involves the temperature dependence of the non-
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vortex superAuid density has to be done. ' We do not
pursue this here. For the present purpose, we view the
observation of the qualitative aspects of the 2D behavior
as evidence of the quality of our cells as far as homo-
geneity of confinement. The value of T& for this and oth-
er plots is determined independently in our experiment
from the signature of the specific-heat singularity of a
bulk sample (—0.5 cm ) which could be condensed on
the regulated platform to which the Si cell is attached.

In Fig. 3, we have plotted the data for four cells. For
clarity the data are oA'set by factors of 2 to avoid overlap
in the power-law region. These data have similar quali-
tative features: a power law of t for large t and devi-
ation from this at smaller t. ' Note that this deviation
onsets earlier, the smaller the dimension of confinement.
This is as expected. To test these data against Eq. (1),
we cast this in the form

k — '
r '"'=f(d""r)

P
(3)

O. I

I

~-0

~~-0

where we have assumed bulk correlation-length scaling
with 9=1/v. A plot of the left-hand side of Eq. (3) vs
d'i't is shown as the top panel of Fig. 4. If the scaling
with 1/v were correct, these data should collapse on a
single curve; they do not. This failure of size scaling
with 1/v has been reported as well for the specific heat
and superAuid density in the case of cylindrical
confinement. We see now that this holds as well for pla-
nar confinement.

In the lower panel of Fig. 4, we plot the data with the
left-hand side of Eq. (3) multiplied by d. We see now
that the data do collapse reasonably well on a universal
curve. Another way of seeing the lack of scaling with
1/v is to note that if f(d'i't) t "/d —to leading or-
der, '" then the data plotted in the bottom panel of Fig.
4 should collapse on a line of slope —v. This is the solid
line in this figure. It is clear that the data do not deter-
mine a line of this slope. If one were to force a straight

IO
d "t

IO

AJ

O. l—

OQI

I

0
0

I

Vg
V +

v~v g 00
g

Qg 0
0gZ oo 00Gp

g 0oo 0
RE3.9 p.m

o 28
0.5I9

n v O. IO6

00+
~o+ +

&X&~Stt
0

line through these data, one would obtain a slope of
—1.14+0.02. This may be viewed as an effective ex-
ponent of 1.14 and can be compared with results from
other data for planar confinement. These yield
1.18 ~ 0.06 and 0.95+ 0.05. ' These seem in reasonable
agreement; however, we note that the nominal con-
finement size given for these data is not correct as judged
by the present work. This is not unexpected on the basis
of the experimental arrangement used in these earlier ex-
periments.

For p, data confined to cylindrical geometry, the
analysis of Gasparini, Agnolet, and Reppy yields an ex-
ponent of 0.82+ 0.02. The surprising difference, howev-
er, from the present work is the fact that these data scale
as 1/d rather than as 1/d. It is possible that this might
be connected with the diff'erence in the lower dimension
in the case of cylinders as opposed to films. If this were
so, then even the form of Eq. (1) would have to be in-
correct.

Recent calculations of finite-size scaling for the Bose
condensate ' of the ideal Bose gas show that for non-
periodic boundary conditions one needs to scale the data
relative to a shifted critical temperature. We have at-
tempted such scaling with our data relative to the tem-
perature where p, vanishes or where the dissipation is
maximum. Neither of these scalings collapse the data.

In summary, we have presented new data for the
superAuid density of helium confined in a well-defined
planar geometry. These are the first data for such
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FIG. 3. SuperAuid fraction vs reduced temperature for four
cells. For clarity, p, /p for the 3.9-, 2.8-, and 0. 106-pm cells
are offset by a factor of 4, 2, and 0.5, respectively, relative to
the data for the 0.519-pm cell.

FIG. 4. Top: data plotted to test scaling with the bulk
correlation length exponent v=0.672, Eq. (3). The data do
not collapse as expected. Bottom: data scaled with an
effective exponent of 1.14. See text.
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confinement which can be scaled with size. The data
display qualitative features expected for such confine-
ment including 2D crossover. Examination of the finite-
size scaling region shows that the data do not scale with
d't"t (or equivalently t "/d). We may interpret our re-
sults instead as yielding an efI'ective exponent of
1.14 ~0.02. When comparing with earlier work, we find
this to be consistent excepting the data of Ref. 20 which
scale as I/d . The common features of all data for p, is
the lack of scaling according to Eq. (1).
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