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We present experimental results and their interpretation on the propagation of surface acoustic waves
on a quasiperiodically corrugated solid. The surface is made of a thousand grooves engraved according
to a Fibonacci sequence. For the first time, we observe the spatial structure of the critical proper modes
obtained from an optical diAraction experiment. These special modes are characteristic of quasiperiodic
systems and exhibit remarkable scaling features.
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It is usually accepted that wave propagation in disor-
dered structures leads to the phenomenon of Anderson
localization at any nonvanishing disorder for space di-
mensions 4 = 1 and 2 and at sufficiently high disorder for
d=3. The localization regime is a nonperturbative effect
involving coherent interferences between all the wavelets
partially reflected by the quenched disordered set of
scatterers, for which only partial scenarios exist. Ac-
cording to the present wisdom, wave propagation in ran-
dom media is characterized by the existence of a remark-
able localization transition separating an "extended re-
gime" at small disorder and a "localized regime" at
large disorder, only at space dimension d & 2. At lower
dimensions, any nonvanishing disorder leads to the
second regime. The existence of a transition between
two regimes is always exciting because one can hope that
understanding the crucial features which trigger the
transition will reveal the physics of the different regimes.

In this respect, wave propagation in one-dimensional
(d=l) quasiperiodic systems is very interesting since it
has been discovered that there exists a transition be-
tween an extended and a localized regime similarly to
what occurs in d=3 disordered systems. ' d=l quasi-
periodic systems are thus natural intermediate cases be-
tween periodicity and randomness. Another motivation
for studying these systems follows from the recent exper-
imental discovery of the quasicrystal phase in metallic al-
loys. From a different point of view, since we have
studied this problem in the context of surface acoustic
waves (SAW's), the understanding of the interaction of
elastic surface acoustic waves with complex surface to-
pography is of major importance to underwater acous-
tics, seismology, surface-acoustic-wave devices, nondes-
tructive testing, and ultrasonic applications in medicine.

In this Letter, we report experimental measurements
on the spectrum and the proper modes of a Rayleigh sur-
face acoustic wave propagating on the quasiperiodically
corrugated surface of a piezoelectric lithium niobate
(YZ-LiNb03) substrate with a thousand grooves en-
graved according to a Fibonacci sequence. It is shown
that this system is in the critical regime of the localiza-
tion transition predicted to occur in certain quasiperiodic
systems. With our choice of studying surface waves, an

optical diffraction experiment using the Raman-Nath
effect allows us to probe for the first time the spatial
structure of the proper modes with a remarkable pre-
cision, and to obtain information which is otherwise very
difficult to extract experimentally. We verify that these
modes exhibit remarkable scaling laws corresponding to
a product of sinusoids with periods related to the differ-
ent quasiperiods of the system. The observed large-
scale structures constitute the clearest signature of the
criticality of these proper modes.

We have studied a lattice of N=10 identical grooves
engraved, using well-known microlithographic tech-
niques, on the surface of a piezoelectric substrate of to-
tal length L, =15984 pm. The average distance a be-
tween the grooves is thus a=L/N=15. 984=16 pm.
Each groove has a width w=5 pm, a depth h =0.3 pm,
and a well-characterized inverse plateau profile. The la-
teral scale of each groove (the so-called opening) is E
=2150 pm. The groove centers are positioned on the
sites of the Fibonacci sequence built recursively from the
successive concatenation of lower-order patterns,

S,~) =[SJ—),S~}. (I)
One has SO=Is}, S~ ={c}, Sq=[sc}, S3 [csc} S4
= lsccsc} and so forth. s =11.6+ 0. 1 pm and c =18.7
+ 0. 1 pm are the two elementary tiles of our one-dimen-
sional quasicrystal. We have s/c =0.620 ~ 0.005, near
the inverse golden mean t =(J5—1)/2=0.6180. The
+ 0.05-pm precision of the position of the grooves corre-
sponds to the limitation of the electronic etching tech-
nique.

Our typical surface-acoustic-wave setup is composed
of electromechanical transducers, laid down onto the sur-
face of the YZ-LiNb03 crystal, which surround the ar-
ray of etched grooves. The transducers are periodic
structures of alternate interdigital electrodes connected
to two buses, which are themselves connected to the ter-
minals of either an electric generator or an analyzer.
They perform the launching and detection of the surface
acoustic waves both in reAection and transmission. The
Rayleigh wave has well-known characteristics. It is a
mixture of longitudinal- and transverse-acoustic modes.
It propagates along the solid-air plane boundary and is
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evanescent away from the solid boundary with a typical
excursion of the order of the wavelength () =20 pm at
typical frequencies around 170 MHz). Its phase velocity
cR = 3490 ms ' is slightly less than the transverse wave
c, and its dispersion is linear in the absence of surface
corrugation. In the presence of a single groove, the
SAW is partially reflected with a reflection amplitude
coefficient given by p =0.6(h/X)sin(2trw/1!, ) = 10 for
our frequency range. Furthermore, a fraction p —20@
of the SAW energy is detrapped and converted into lon-
gitudinal and shear bulk acoustic waves. "

We first briefly present some of our most salient re-
sults and then discuss their significance. Figure 1 gives
the dependence of the SAW reflection coefficient R as a
function of frequency f in the range 153-193MHz. The
large-scale bell-like shape corresponds to the transfer
function of the measuring transducers. The information
relevant to the study of the d=1 quasicrystal is the
peaks which decorate this structure. We observe the ex-
istence of particular frequencies f for which the reflec-
tion coefficient is significantly increased. This can be in-
terpreted as the largest stop bands of the system. We
have verified that the pattern of peaks obtained under
reflection was recovered exactly under transmission.

Figure 2 shows the spatial structure of the SAW at
particular frequencies in the neighborhood of one of the
gaps (shown by the arrow at/X=8/17 in Fig. 1). We
note first that the intensity modulations have spatial
periods A=10 -10 pm much larger than the period
k/2 = 10 pm of the standing waves that would occur in a
cavity of size equal to the system length in the absence of
the quasicrystalline lattice of grooves, for the short wave-
lengths used in our experiments. These modulations are
thus interesting signatures of the SAW propagation on

the quasiperiodic lattice. Figure 2 is obtained under a
"zero-flux" condition, i.e., by superimposing two SAW's
of approximately the same frequency, amplitude, and

phase but opposite direction launched from the two
transducers on both sides of the system. We have
verified that this SAW spatial structure has the same

topology (same number of oscillations), apart from a dif-
ference in amplitude, as the one obtained when the SAW
is launched from only one side of the system. This
feature has been verified on many other examples at
diA'erent frequencies. In Fig. 2, it can be noted that
several diff'erent spatial periods are superimposed and
build the complex spatial modulation of the wave. Note
also the sensitivity of the largest spatial modulation with

respect to SAW frequency: A frequency shift of 0. 1

MHz (less than 10 in relative value) yields a transi-
tion from four undulations to three and from three to
two undulations.

In order to rationalize these observations, we need a
theory describing the SAW propagation over an array of
grooves. For symmetric scatterers and from local energy
flux conservation, we previously derived ' a general
transfer matrix connecting the SAW amplitude before
and after a groove. Consider a wave amplitude at point
x of the general form

Y ( ) Y+ ik(x —x )+Y
— —k(x —x )

before the scatterer located at x =x„and
Y+ ik(x —x„)+Y

— —ik(x —x„)

after the scatterer. Then, a transfer matrix M connects
fY„+~,Y„+~1 to fY„+,Y„1. Neglecting wave attenua-
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FIG. I. Dependence of the SAW reflection modulus as a
function of frequency. Each peak probes the existence of a
stop band (see Ref. 9 for more details about the peak pattern).
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FIG. 2. SAW intensity as a function of position of the laser

spot along the sample for three close frequencies in the neigh-

borhood of one stop band shown in Fig. ) (at/). =8/17).
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Note that the quasiperiodic modulation of the grooves
enters only via the phases p„. In contrast to the Aubry
model where the scatterers are equidistant but have
scat tering cross sections quasiperiodically modulated
[t„~=t„+~ =t is constant and E = Vcos(2+nt)], Eq. (2)
corresponds to identical scatterers, with positions given

by the inflation rule (1). The p„ thus takes only two
values p, . =kc and p, =ks which occur according to the
formula

p„= (2x/k) [c —(c —s)int[frac(n(t —1)) —t]], (3)

where int(x) means the integer part of x, and frac(x)
mean the fractional part of x. In this case, the spectrum
is predicted to be a Cantor set with zero Lebesgue mea-

sure. This system is also argued to correspond to the
critical condition V=2t (Ref. 11) of the Aubry model. '

The proper modes are neither extended nor localized and

exhibit a characteristic scaling. The precise features of
the spectrum and the proper modes can be obtained from

a mapping theory written in terms of the trace of the
transfer matrix which obeys a simple nonlinear map. '

In general, this map can only be studied numerically. As

a complementary picture, we present a heuristic model

for the SAW propagation, which relies on the tight-
binding Schrodinger discrete equation (2) and which al-

lows us to interpret quantitatively our experimental re-

sults. '
Our approach amounts to replacing the exact expres-

sion (3) for the p„by the following Ansatz:

&„=27tfrac[nat/U . (4)

Numerical justification of the Ansatz will be reported in

Ref. 9. Equation (4) is very similar to Eq. (3) but for
the fact that the wavelength X now appears inside the
function frac. Inserting expression (4) into (2) shows
that the coefficients of Eq. (2) are now of the form
sin[2nnat/X+p(p)] since a periodic function of
makes it possible to eliminate the function frac. For
wavelengths such that at/Xis a rational num, ber p/q, the
response of the system is thus similar to that of a period-
ic structure of period q. The smallest q will give the
largest reflection coe%cient since this will correspond to

tion, M becomes symplectic and depends on two parame-
ters p„and p„, where p„ is the groove amplitude reflec-
tion coefficient which is constant in our case (p„=p)
and p„=k (x„+~

—x„), with k =2'/X, represents the
phase factor for the propagation from the (n —1)th to
the nth groove. The transfer-matrix formalism can be
mapped onto a discrete of-diagonal Schrodinger tight-
binding equation in terms of the value Y„=Y,++Y„of
the SAW amplitude just before the nth groove:

tn + ] Yn + ] + tn —] &n —] En &n =0 ~

with t„+ ~ =sing„~, t„~ =sing„, and

E„=si n(p„~ +p„) —2p sing„- ~ sing„.

the largest number of periods per unit length in the
efective periodic lattice. This is indeed what one can
observe in Fig. 1: A series of peaks in the neighborhood
of the central frequency f= 175 MHz can be indexed by
a single integer n such that the variable at/k is of the
form

at/k =n/(2n ~ 1), n =1,2, . . . , ~. (5)

The series (5) corresponds to very favorable cases (q
small) and gives the strongest reflection coefficients.
Consider, for instance, the case at/%, =0.5. The mea-
sured width of this stop band, obtained by magnification
of Fig. 1, is t3f =0.7+'0. 1 MHz yielding hf/f = (4
~ 0.5) X 10 . The theoretical value corresponds to the
two wavelengths such that (1+p /2) cos2xat/k = 1

which gives Af/fth„„= 5.7X10 in rather good agree-
ment with the experimental value. Good quantitative
agreement also carries over to the other peaks.

Let us now explain the striking structure of the proper
modes presented in Fig. 2. From our Ansatz (4) and the
implicit existence of an equivalent periodic system, one
expects that the modes should have a structure corre-
sponding to that of the Bloch modes in these efective
periodic systems. In the case of Fig. 2, at/k is in the
neighborhood of 8/17 with frequency around f= 166
MHz. Consider more precisely the mode at f=166.0
MHz. With cz = 3490 ms ', ' this yields at/X =237/
504. ' The successive diophantine approximations of
this rational number are 1/2, 7/15, 8/17, and 237/504
since its continued-fraction expansion is

237/504=(r)+(rp+(r3+r4 ') ') ')
=(2+ (7+ (1+9 ') -') -') -'

Because of the fact that we observe experimentally the
envelope of the wave amplitude, this implies that one
should observe the spatial periods a, (7-8)a, and 252a
corresponding, respectively, to the first approximation
r~ =2, to the second (and third) approximation rq=7
(r3 1) and to the fourth approximation r4=9. These
difl'erent periods 1, 7-8, and 252 correspond to a total
number of oscillations over the system length L/a =10
equal, respectively, to 1000/1, 1000/8 =125, and 1000/
252=4. These predictions are well observed in Fig. 2
for the largest periods 7-8 and 252. Because of the finite
spatial resolution of the optical probing method, we can-
not see the shortest period a. Note that these observa-
tions are similar to the proposal by Thouless and Niu
concerning the large-scale spatial structure of a critical
proper mode.

The same analysis can be repeated for all modes. By
carefully spanning the SAW frequency range, we have
observed as many as three different sinusoidal modula-
tions with largely diferent wavelengths which superim-
pose and determine the spatial structure of the mode.
Note that the appearance of long-wavelength modula-
tions as occurs in Fig. 2 corresponds to a very rapid con-
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FIG. 3. Spatial period A of the observable proper modes for
frequencies in the neighborhood of two stop bands shown in

Fig. I: ar/k = I/2 (right peak) and at/X =8/17 (left peak).

where the time impulse response is also discussed. The
theory is developed and provides a means to escape from
the approximation (4) used instead of (3). By a full
treatment of the complete problem (3), the experimental
results are explained in terms of the asymptotic approxi-
mation of the quasicrystal by periodic systems of increas-
ing periods.
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vergence of the successive diophantine approximation
p„/q„of at/X. The larger q„ is, the smaller will be the
frequency range over which the diophantine approxima-
tion holds at the order n. This is illustrated in Fig. 3:
The bandwidth and the frequency interval over which
the tail of the peak survives are larger for at/A, =1/2
than for 8/17. This also explains the transitions observed
in Fig. 2 where only the largest period is sensitive to a
small frequency shift.

As f approaches a stop-band edge (5), the largest spa-
tial modulation A diverges, as seen in Fig. 3 for the two
cases at/X = I/2 and 8/17, according to a measured
power law A —

~ f f ~ g ~
"with v—=0.50~0.05. Con-

sider the Bloch expression for the mode amplitude Y„(x)
=u„(x)e ' ", with u„(x) of period qtz and K given by
s=e —'"~'. The quantity s verifies the secular equation
s —{trace(M)/s+ I =0, M being the corresponding
transfer matrix over a single cell. In the neighborhood of
band edges, one has generically trace(M)~ 2, which

implies that s is close to one and EC is close to zero. The
sinusoidal modulation e ' develops therefore a very

long spatial period

A =qa(Kqa) ' = qa(1 —s) '=qa
~
2 —trace(M)

~

with v= —,
' in agreement with our fit. This power law

can be verified for all frequencies such that at/X fulfills

Eq. (5).
In summary, we have given, for the first time, an ex-

perimental characterization of the critical proper modes
in d=l quasiperiodic systems. Their spatial structure
can be simply interpreted in terms of successive diophan-
tine approximations of the reduced variable at/k, where

a is the average lattice period, k is the surface acoustic
wavelength, and t is the inverse golden mean. A much
extended version of this work is presented in Ref. 9
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