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Flat, cylindrical, and spherical soliton solutions to various model equations are known. Many of these
exact solutions have been seen in numerical simulations. However, there are few simulations that actual-
ly show that exact flat solitons can break up into an array of exact cylindrical or spherical solitons and
follow this on a step by step basis. This Letter presents the first of these two kinds of transitions for the
Zakharov-Kuznetsov equation governing ion acoustic solitons in strongly magnetized plasmas.

PACS numbers: 47.20.Ky, 52.35.Kt, 52.35.Py, 52.35.Sb

In a three-dimensional unmagnetized plasma, small-
amplitude, flat ion acoustic solitons are stable.'™3 The
existence of these stable entities has been confirmed ex-
perimentally. *

The situation changes if a strong external magnetic
field is applied to the plasma. Although the basic solu-
tions are still the same for a soliton propagating along
the magnetic field B, the dynamics in the perpendicular
direction will be altered, causing solitons to lose their
stability. Planar solitons become unstable if the field is
strong enough and the perpendicular wavelength of the
perturbation exceeds some critical value. A good model
for this situation is furnished by the Zakharov-
Kuznetsov (ZK) equation.’~®

The Zakharov-Kuznetsov equation for ion acoustic
waves propagating along the magnetic field in a strongly
magnetized, two-component cold plasma is®°
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where the independent variables x,y,z,t are obtained
from the laboratory ones x;, y;, z;, t; by appropriate
stretching which involves the external magnetic field in
the case of y and z (x=¢lx;—¢l, yxey, zxez,
t=¢%t). Here n is the normalized deviation of the ion
density from the average.

Although flat ion acoustic soliton solutions of the
Zakharov-Kuznetsov equation are unstable, spherical
solutions exist and are more robust. The original paper®
includes a limited stability analysis of these entities.

The above mentioned work on flat soliton stability is
based on a linear analysis describing the onset of insta-
bility. The main goal of this Letter is to investigate the
further fate of unstable plane solitons. Because of nu-
merical limitations, we consider the two-space-dimen-
sional version of the ZK equation, but return briefly to
three-dimensional considerations at the end of this paper.
Thus we now assume invariance in z.

A particular class of solution of (1) is given by the fol-
lowing function of x,:

n=12n%sech’[n(x —xo—4n°t)]. 3)
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One of these one-dimensional, one-soliton solutions will
be essentially the starting point of our numerical solu-
tion. We take (3), perturbed periodically in the y direc-
tion. The results are presented in Fig. 1. Cylindrical
solitons are seen to result after a while. Further evolu-
tion, not shown here, leaves these entities unaltered. All
this would suggest that we have obtained a new, station-
ary and, in fact, stable solution of the ZK equation. An-
alytic candidates for this solution can be obtained from
ZK if we consider solutions to (1) in the form
n(x,y,t) =f(x —ct,y) that vanish at infinity. We obtain

An—(c—n/2)n=0. 4)

This equation is a two-dimensional version of a full equa-
tion cited in the original ZK paper.® Figure 1(e) sug-
gests we look for angle-independent solutions to (4); thus
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This is an ordinary differential equation and is easily
solved. The resulting shapes and velocities for the soliton
have been checked to be in full agreement with those of
the cylindrical solitons emerging in Fig. 1. Thus the
transition from a flat to an array of cylindrical solitons,
all of which are found from theory, has been demonstrat-
ed step by step on a computer. This is the most impor-
tant point of our Letter. Its significance may well have
bearing on other fields of physics.

These new structures emerged as a results of the insta-
bility of a flat soliton and, of course, we must now con-
sider their stability. In the following we show that they
are two-dimensionally stable with respect to dilations.
Consider scalings that conserve momentum
P=2xfn?rdr (in this model normalized n and v are
equal, so the integrand could be written in the more fa-
miliar form nv in place of n?):

n—A"'n, r—ar.
The ““energy” is now

EQra " 'n)=—1/3r+1,/A%,

I, =27rfn3rdr, 13=27rfn,2rdr,
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FIG. 1. (a)-(d) Consecutive stages in transition from flat
soliton to cylindrical array and (e) bird’s eye view of the last
stage corresponding to (d). The coordinate system is moving
with the velocity of the initial soliton.

and so
QE/9\=1,/30%2—21,/2°.

Thus, dE/d2 =0 (and this is a minimum) for A=1 if
1,/I,=6. This was easily verified to be the case for our
solution and I,/I, is invariant for all soliton solutions of
(5) (the value 5.999 was obtained; we also used our solu-

tions to check that the total energy of the cylindrical ar-
ray is lower than that of the initial flat soliton).

We now propose to summarize the results from a
three-dimensional point of view. Flat solitons are unsta-
ble if the system permits long enough perturbations. If
the perturbation is also z independent the flat soliton
eventually breaks up into a system of cylindrical solitons.
By analogy we again expect a fully three-dimensional
analysis to show a cylindrical soliton breaking up into a
system of spherical solitons when long enough perturba-
tions along z are possible. The spherical solitons are
presumed stable. If indeed there is also a critical wave-
length for perturbations that can destroy cylindrical soli-
tons, instabilities will not always set in and these tube-
shaped entities might be observed experimentally in
some situations.

Two other open questions are what happens to flat sol-
itons if the initial perturbation is three dimensional, and
what are the mechanics of possible further transitions
from tube-shaped to spherical solitons (growth rates of
instabilities, etc.).

In conclusion, we see that an unstable perturbation
can lead to a spontaneous transition from a flat to a cy-
lindrical soliton. We also see that the mechanics of this
transition from one soliton structure to another, both
known analytically, can be followed. However, new
questions have been raised and these will be investigated
in a fuller version of this paper, where more details of the
emerging cylindrical solitons will also be given.
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