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Fully Developed Traveling-Wave Convection in Binary Fluid Mixtures
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Structural and dynamical properties of nonlinear traveling-wave states in binary fluid layers heated
from below are determined by numerical integration of the proper hydrodynamic field equations with ex-
perimental horizontal boundary conditions. The fluid separates into traveling rolls of alternating high
and low concentration. Phase diflerences drive lateral currents and Reynolds stresses lateral mean flow.

PACS numbers: 47.25.Qv, 47.20.—k, 47.35.+i

Horizontal layers of binary fluid mixtures, e.g. , etha-
nol and water, heated from below show various struc-
ture-forming, convective bifurcations out of the quiescent
conductive state. ' In particular, there is a backwards
Hopf bifurcation with a hysteretic transition to a convec-
tive traveling-wave (TW) state. Therein a pattern rem-
iniscent of simple straight convective rolls propagates
with uniform velocity. We have elucidated the structure
and dynamics of such states: For not too small Soret-
induced concentration gradients the fluid separates into
an alternating sequence of roll-like domains with homo-
geneously high and low alcohol concentration and a thin
transition boundary layer meandering around the rolls;
and this structure propagates as a whole. The waves of
temperature T, alcohol concentration C, total mass den-
sity p, velocity u, and pressure p associated with this TW
state are neither planar nor harmonic. Also, there are
phase diff'erences between the waves which drive station-
ary lateral convective currents that are counterflowing in

the upper and lower half of the layer. Furthermore, and
in addition, the Reynolds stresses of the TW create a
global stationary lateral mean flow that is peaked at
midheight.

Our results follow from numerically solving the full
nonlinear, time-dependent hydrodynamic equations for
the fields T,C,p, and u=(u, O, w) with vertical com-
ponent w and lateral component u in an x-z section of
the layer with rigid, isothermal, impermeable horizontal
boundaries at z =0 and d. Here d is the layer thickness.
Laterally we impose at x =0 and 2d periodic boundary
conditions —experimental wavelengths of convective roll
patterns are X =2d. We used a MAC code with 42 x 22
grid points. From runs with poorer and better resolution
we can infer that all properties of the fields shown here
are reproduced correctly. We estimate relevant errors of
u, T (C) 5 5% (10%). The Prandtl number cr = v/tc = 10,
the Lewis number L =D/tc=0. 01, and separation ratio
y= —(p/ctTp)kT = —0.6 were for ethanol-water mix-

tures�"

of mean alcohol concentration Co =0.08 and
mean temperature To=282 K. Here v is the kinematic
viscosity, K is the thermal diA'usivity, D is the diff'usion

coefftcient, a = —(1/p) 8p/8T and P = —(I/p) Bp/BC are

thermal and solutal expansion coefficients, and kT is the
thermodiA'usion ratio. We parametrize the vertically
imposed temperature difference hT by r =R/R, ,the
Rayleigh number R =agd hT/tcv reduced by the critical
one R, =1708 for the onset of convection in pure water
(y=O). Here g is the gravitational constant. We shall
measure lengths in units of d and time in units of the
thermal diffusion time d /tc. Temperatures will be re-
duced by hT and concentration by ATa/P.

In the quiescent, laterally homogeneous conductive
state, F„„d=Fo+s(z ——,

' ), the fields F=T,C,p have
vertical gradients s = —1, —tlrpoai5. T(1+ tit), respective-
ly. The imposed h, T generates via the Soret efrect' an
adverse concentration gradient when y & 0. The density
variation arises from thermal and solutal expansion
around the mean density po. Since the temperature-
induced unstable density stratification is reduced at
y & 0 by the concentration gradient, onset of convection
in the mixture occurs at a threshold Rayleigh number
r & 1. For presentation purposes we decompose the
fields into conductive parts and contributions caused by
convection,

T Tqplld =0 ~ C Cgond =C
~

(p —p,»d)/pp =p = crit T(8+c) .

For our parameters an unstable TW solution (with
wave number k =tr and Hopf frequency toH =23.4) bi-
furcates subcritically at r„,=2.41 out of the conductive
state' (cf. Fig. 1). Increasing r beyond r„, the system
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FIG. I. Nusseit number for TW convective (dots) in mix-
tures (I =0.01, y= —0.6) and for stationary rolls in pure quid
(squares) each with a =10. Ã =1 is the conductive state.
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undergoes a transition to the stable upper TW solution
branch having a saddle at r, =2.09. (For less negative y
this TW solution branch ends with zero frequency in a
stationary state in the r range of Fig. 1. The end point
moves with increasing y closer to the saddle and falls
below r„,.) Here we present as a representative example
the TW at r =2.S=1.04r„,. After transients have died
out all fields have the form of waves traveling, e.g. , to the
right: F=F(x —cur/k, z). Their velocity is about 3 of
the linear TW at onset. The Nusselt number is station-
ary and rather large, N =1.87, so that convection is well

developed. In Fig. 2 we show isolines of T and C. The
velocity field looks like that of stationary rolls in pure
water. However, the diA'erences are subtle and impor-
tant (cf. later).

The temperature distribution roughly reAects the ve-

locity field: Warm upAow (cold downAow) bends the
horizontal isotherms of the conductive state upwards
(downwards). The isotherms are not sinusoidal and their
extrema do not coincide with upfiow and downAow maxi-
ma. In fact, the temperature wave lags behind the wave
of the vertical velocity by a phase diA'erence p
=0.38 that drives a large-scale convective lateral heat
current to be discussed later on. The lag agrees well
with the prediction arctan[co/(k +x )] of a Galerkin
model. To display the phase relations of the diA'erent

waves we show by full lines the crest positions of the first
lateral harmonics which dominate. The wave in C is
ahead of the wave in ~ and the phase difference p
drives a lateral convective concentration current.

All waves are nonplanar. The z variation of the lines
of constant phases is obvious for T and C in Fig. 2 but
also the velocity wave is not planar (cf. later) N.one of
the waves is pure harmonic; their shapes [shown in Fig.
2(d) at z = —,

' ] are distorted to varying degrees. In par-
ticular, the C wave is steplike reflecting the alternating
sequence of roll-like domains with high and low alcohol
content: In the white (shaded) patch of Fig. 2(c) cen-
tered on and comoving with the left- (right-) turning
vortex the concentration is practically constant and small
(large). The boundaries of the white and shaded patches
in Fig. 2(c) practically coincide with the separatrices of
the stream function in the frame comoving with the TW.
The separatrices close to the uppper (lower) plate where
the conductive concentration profile is high (low) are
rich (poor) in alcohol. The other isoconcentration lines
in Fig. 2(c) also practically coincide with streamlines in

the comoving frame. Thus, except for diA'usion (which,
however, is small with L being small) alcohol inside the
separatrices is trapped there, comoving with the TW.
On the other hand, alcohol outside the separatrices
moves basically opposite to the TW along open stream-
lines that are very similar to the open isoconcentration
lines in Fig. 2(c). All in all, the mixture undergoes a
separation into distinct roll-like domains of alternating
high and low alcohol content with a thin, meandering

boundary layer between them (by contrast, stationary
rolls are mirror images of each other and C is almost
constant in the middle portion of the layer). The con-
centration profile in the layer is linear'' [cf. Fig. 2(d)].
With increasing m the spatial extent of the layer grows,
the separatrices, i.e., the size of the patches, shrink, and
the concentration contrast increases.

The TW shows symmetry behavior under translation
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FIG. 2. TW traveling to the right: (a) velocity field; (b), (c)

equidistant isolines for T, C in the x-z section of the layer. Full
(dotted) isolines refer to small (large) values. Crest positions
(thick lines) of first lateral harmonics show that the waves are
not planar and that they are phase shifted relative to each oth-
er. Wave forms (d) of 0.04w (thin line), 40 (triangles), 10c
(thick lines with squares), and 2P (dots) at z= —,

' are not har-
monic. Square-shaped concentration wave reflects the separa-
tion into right-turning rolls with high alcohol concentration
and left-turning rolls with low C. Shaded (white) patch of
constant large (small) C is bounded by separatrix of stream
function in frame comoving with T%'. Open iso-C-lines practi-
cally agree with open streamlines in that frame. Parameters
are a. =10, L =0.01, y = —0.6, r =1.037r„„co=0.347mH,
k =2.
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FIG. 3. Vertical field profiles at positions A, A' (near roll

centers) and B,B' (near downflow and upflow, respectively)

marked by arrows in Fig. 2. Dotted lines are conductive

profiles. Fields at A, A' and 8,8' are related to each other by

the discrete symmetry operation (2).

in x by k/2 combined with reflection at the midplane,

6F(x,z) = +' SF(x+X/2, 1
—z), 8F =F Fo, (2)—

with + for u,p and —for ~, T,C,p. Stationary roll
patterns in mixtures and in pure fluids also have this
symmetry which, as far as we know, has not been men-
tioned in the literature.

In Fig. 3 we show vertical C and p profiles at positions
A, A' (near roll centers) and 8,8' (near. downflow and
upflow, respectively) marked by arrows in Fig. 2 together
with linear conductive profiles (dotted lines). Convec-
tion changes the C profile drastically and almost halves
the conductive concentration difference between alco-
hol-rich fluid at the top and alcohol-poor fluid at the bot-
tom. However, this is not done by mixing the fluid

homogeneously but by mixing it on two concentration
levels of alcohol-rich rolls (positions A, 8) and alcohol-
poor rolls (positions A', 8') with boundary layers between
them and the plates. The convection-induced reduction
in the vertical concentration contrast enhances for y & 0
the density contrast between top and bottom (by almost
85%), thus increases the already unstable conductive
density stratification even more, and thereby increases
the buoyancy force that drives convection. This non-
linear feedback mechanism might explain why the inten-
sity of convection does not grow linearly with applied
temperature stress out of the conductive state but rather
sho~s a first-order transition in a backwards bifurcation.

To quantify the anharmonicity of the waves we show
in Fig. 4 lateral Fourier amplitudes

~ f, (z)
~

of the con-
vective fields (1) in comparison with critical modes re-
sulting from linear analysis' at r„,. We do not show
velocity modes since, e.g. , { u ~ [ and

~
w

~ ~
are practically

identical to stationary convective modes in pure water
and the shape of the former agrees with the linear

FIG. 4. Fourier amplitudes
~ f„ i of convective TW fields for

n =1,2, 3 vs z. Curves labelled "crit" result from a linear
analysis at r„, with an overall scaling factor chosen such that

i
0~

i
for linear and nonlinear TW states agree at z = —,

' .

modes. The plateaulike behavior of ~c& ~
in the fully

developed TW clearly diff'ers from the critical concentra-
tion mode. Both of the latter, however, show similar
small-scale boundary-layer variations near z =0 and 1

caused by the small Lewis number. While n & 1 har-
monics of u and 0 carry only sma11 weight this does not
hold for c.

We finally discuss the mean lateral flow U(z) =(u)
and mean lateral convective currents of heat, (Tu), con-
centration, (Cu), and mass, (pu). The angular bracket-
ing implies a lateral average or equivalently a time aver-
age over one period of the TW. The mean flow results
from Reynolds stresses of the TW velocity field that are
related to z-dependent phases of w„(z). The mean flow

profile and the phase, p„(z), of the n =1 mode of w are
shown in Fig. 5(a). Both are bowed opposite to k. Be-
cause of (2) they are symmetric around z = —,'. As an
aside we mention that p in the linear TW at r„, is
curved towards k but changes direction with decreasing
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FIG. 5. (a) Lateral mean flow (u)=U(z) and phase v„(z)
of the first Fourier mode w~. (b) Contribution (ii) to mean la-
teral currents of heat and of concentration. The TW propa-
gates into the direction of the arrow. The overbar in the figure
has the same meaning as the angular brackets in text.
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o. In our nonlinear TW the direction changes near the
saddle. With

~ w~
~

varying quadratically near the plates
and p„growing linearly there, U(z) grows with the fifth
power of the distance from the plates. The maximal
mean flow is about 1% of the phase velocity of the TW
and the total spatial mean is Up =j tadz U(z) = —0.008.

Note that the two contributions (i) FpU and (ii)
((F—Fp)u) [Fig. 5(b)] to the mean lateral convective F
current, (Fu), are quite different: (i) describes transport
of the mean Fp by the flow U while (ii), being practically
identical to (fu) for T and C, is dominated by the con
vective part f. The currents

in turn are dominated by ( f ~ ( 8, ) w~
~
sin(pf —p )

which explains the direction and form of the currents in
Fig. 5(b) in the upper and lower halves of the layer. Be-
ing driven mostly by the phase difference between the f
and w waves they are present also if U=O. With (2)
the profiles (ii) are antisymmetric around the midplane
so that the net current fpdz((F —Fp)u) vanishes. But in

the upper half of the layer there is a stationary current
of heat (Ou) (concentration (cu)) parallel to k ( —k),
and vice versa in the lower half. The size is not small,
e.g. , (Ou)=0. 5 is comparable to the vertical convective
heat current, N —l. In addition, the currents (i) con-
tribute depending on the particular experimental value of
Tp, Cp, and pp. In our case the contribution FpUp to
(Tu) and (pu) would be substantially larger than the
maximum of (fu), while for the concentration current
they would be comparable. Extended TW states (the
role of lateral currents and mean low in localized states
is still an open problem) in annular experimental con-
tainers, being unobstructed by lateral sidewalls, are best

suited to check our predictions.
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