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Observable Gauge Transformations in the Parton Picture
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The internal space-time symmetry of rapidly moving composite particles is studied in terms of the lit-

tle groups of the Poincare group. It is shown that I.eynman s x in his parton picture is a gauge-
transformation parameter.
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unific» the energy-momentum relations for massive (nonrela-
tivistic) particles and for massless particles. The second row

indicates that the little group of the Voincare group unifies the
internal space-time symmetries of m Issive and massless parti-
cles, as is discussed in Ref. 2. T,:e third row states that the co-
variant phase-space picture cf quantum mechanics forms the

physical basis for the covariant narmonic-oscillator formalism
which ha» been shown to give, & unified picture of the quark
nlodel, Ind the parton picture.

The internal space-time symmetries of elementary
particles are governed by the little groups of the Poincare
group. The little groups for massive and massless parti-
cles are locally isomorphic to O(3) and E(2) (two-
dimensional Euclidean group), respectively. It was
shown recently that the E(2)-like little group for mass-
less particles is an infinite-momentum, zero-mass limit of
the O(3)-like little group. ' The role of the little groups
is illustrated in the second row of Fig. 1.

The purpose of this Letter is to show that the internal
space-time symmetry of composite particles can be for-
mulated within the framework of Wigner's little groups,
and that Feynman's x parameter in his parton picture" is

a gauge-transformation parameter. This will unify the
second and third rows of Fig. 1. This figure is from the
recent paper by Kim and Wigner which deals primarily
with the third row. '

Wigner's little group is the maximal subgroup of the
Lorentz group ~hose transformations leave the four-
momentum of a given particle invariant. For a massive
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point particle, there is a Lorentz frame in which the par-
ticle is at rest. In this frame, the little group is the
three-dimensional rotation group. This is the fundamen-
tal symmetry associated with the concept of spin.

The internal space-time symmetry of massless parti-
cles is governed by the cylindrical group which is locally
isomorphic to E(2).' In this case, we can visualize a cir-
cular cylinder whose axis is parallel to the momentum.
On the surface of this cylinder, we can rotate a point
around the axis or translate along the direction of the
axis. The rotational degree of freedom is associated with

the helicity, while the translation corresponds to a gauge
transformation in the case of photons.

This translational degree of freedom is shared by all

massless particles, including neutrinos and gravitons.
Indeed, the requirement of invariance under this symme-

try leads to the polarization of neutrinos. ' Since this
translational degree of freedom is a gauge degree of free-
dom for photons, we can extend the concept of gauge
transformations to all massless particles" and massive
particles in the infinite-momentum limit.

It is not difticult to associate the symmetry of a point
particle with that of a composite particle if they are mas-
sive and at rest, because both of them are governed by
the three-dimensional rotation group. The story is quite
diAerent for rapidly moving composite particles or had-
rons. Does a rapidly moving hadron have the same set of
space-time degrees of freedom as that of photons'? We
can study this problem by constructing a cylindrical
symmetry for a hadron with infinite momentum. Then,
is this symmetry consistent with Feynman s parton pic-
ture? This is the question we would like to address in

the present paper.
The group of Lorentz transformations is generated by

three rotation and three boost generators. '"' lf we use
the four-vector convention x" =-(x,y, z, t), the generators
of rotations around and boosts along the z axis take the
form
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respectively. The remaining four generators are readily
available in the literature. They are applicable also to
the four-potential of the electromagnetic field or to a
massive vector meson. These generators in diA'erential
form are also available in the literature. J3 and Kq take
the form

J)= i —x —y, K3= —i r +z, (2)B . B

By Bx Bz Bt

applicable to the internal space-time variables of an ex-
tended object.

The O(3)-like little group for a particle at rest is gen-
erated by J], J2, and J3. If the particle is boosted
along the z direction with the boost operator 8(q)
=exp( —gK3), the little group is generated by
J =8(q)J;8( —ri). Because J3 commutes with K3, J3
remains invariant under this boost. J] and J2 take the
form

J I
= (coshrt) Ji+ (sinhri)Kq,

J~ = (coshrt) J2(sinhri)K~ .
(3)

For large values of g, we can consider N] and N2 defined
as N~ = —(cosh@) 'Jq and N2=(coshri) 'J~, respec-
tively. Then, in the infinite-g limit,

N] =K] —J2, N2 =K2+J] . (4)

These operators satisfy the commutation relations

[Jq,N)] =iN2, [J3,Ni] = —iN), [N), Npl =0. (5)

J3, N ~, and N~ are the generators of the E(2)-like little
group for massless particles. ' In terms of the dif-
ferential operators, the little group is generated by J3 of
Eq. (2), and by

N~= —i x + —(z —t)B B B

Bt Bz Bx

N2= —i y +B B

Bt Bz
—(z r)—

By

When boosted along the z axis, u and v are multiplied by
e" and e ", respectively. The v variable can thus be ig-
nored when g is very large.

The little group can now be generated by 3x3 ma-
trices applicable to the three-dimensional space of
(x,y, u): '

0 —i 0 000 000
Jg= i 0 0 Ni= OOO, N~= 000 . (8)

,0 0 0, , i 0 0. ,Oi 0,

In the infinite-momentum limit, it is more convenient
to use the light-cone coordinate system, in which the z
and l variables are replaced by

u = (t+z)/ J2, v = (z —r )/ J2 .

cosQ

sino.

a
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The rotation around the u axis by e is generated by J3.
N] and N~ generate translations along the u axis. As we
noted earlier in this paper, the translation along the u

axis is a gauge transformation. ' ' '
Since B/Bu = (1/W2) (B/Bz+ B/Br ), the differential

operators N~ and N& of Eq. (6) will become the genera-
tors of translations along the u axis,

N] = —ix, N2= —iy
Bu Bu

if the terms containing the (z —t) can be dropped in Eq.
(6). Then, the above operators will generate gauge
transformations on the function to which they are applic-
able.

Let us see whether the covariant harmonic-oscillator
formalism which Kim and Wigner used in Ref. 5 to con-
struct the third row of Fig. 1 satisfies the above-
mentioned condition. The physical basis for this covari-
ant formalism is the phase-space picture of quantum
mechanics proposed by Wigner in 1932. ' ' This
harmonic-oscillator model has been shown to be eff'ective
in describing many by the basic phenomenological prop-
erties of relativistic hadrons, including hadronic mass
spectra, form factors, and the parton phenomenon.

If the space-time position of two quarks bound togeth-
er inside a hadron are specified by x, and xb, respective-
ly, the system can be described by the following vari-
ables:

X-(x.+xp)/2, x = (x„—xg)/2&2. (l2)
The four-vector X specifies where the hadron is located
in space and time, while the variable x measures the
space-time separation between the quarks. As for the
four-momenta of the quarks p, and pb, we can combine
them into the total four-momentum and the mo-
mentum-energy separation between the quarks:

P P~+Pg 9 =Z2(P Pb) (l3)

where P is the hadronic four-momentum conjugate to L;
The internal momentum-energy separation q is the con-
jugate to x.

The covariant-oscillator wave functions are Hermite
polynomials multiplied by a Gaussian factor, which dic-
tates the localization property of the wave function. The

We know how to construct rotation matrices from J3.
As for N] and N2,

100
exp[ —i(aN~+bN~)] = 0 l 0

,a b 1,
This means that the most general form of transformation
1S
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Gaussian factor takes the form

The Lorentz-deformation property of this form is illus-
trated in Fig. 2.

Q ARCS AR ONS

exp[ —(n/2)(x-'+y'+z-'+r-')] .

This expression is localized in the four-dimensional
space-time. Since the x and y components are invariant
under Lorentz boosts along the z direction, and since the
oscillator wave functions are separable in the Cartesian
coordinate system, we can drop the x and y variables
from the above expression, and restore them whenever
necessary. The ground-state wave function can then be
written as"

y„(z,r) =(n/zr) "-exp[ —(n/2)(e '"u'+e'"v')].

As g becomes very large, the distribution in v becomes
very narrow. Since v =(z —t)/J2, the terms containing
(z —t) in Eq. (6) will produce a factor like v6(v) when
applied to the Lorentz-deformed function of Eq. (15),
and can therefore be dropped. The operators Nl and N2
then become those given in Eq. (11). Since they satisfy
the commutation relations of Eq. (5), N

~
and N2 of Eq.

(11) together with J3 of Eq. (2) can be chosen for the
generators of the little group for relativistic extended
particles in the infinite-momentum limit.

The Lorentz-deformation property of the Gaussian
form is shared by all other functions localized in the z-t
plane. The distribution becomes narrower in v, while it
becomes wider along the u axis in the manner described
for the oscillator case in Fig. 2. The generators of the
little group do not depend on the shape of wave func-
tions. Therefore, in the infinite-momentum limit, the
above conclusion is valid for all distribution functions lo-
calized in space and time.

The same reasoning can be carried out for the
momentum-energy space, with q„=(q- —qo)/ J2 and

q, . =(q +qp)/J2. The momentum wave function is
r I/2
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These are also the generators of gauge transformations.
In the infinite-momentum limit with t =z and q: =qo,

u and q, . become J2z and J2q-, respectively. Both the z
and q- distributions become widespread. Furthermore,
the momentum of each quark can be parametrized as

p„- =gP

(i 6)

It has a narrow distribution in q, or (q- —qo)/J2, and
the N I and N2 operators take the form

= q

MOMENTUM-ENERGY

DE FORMAT ION

I

I

, (Parton momentums,
distribution

becomes wider

FIG. 2. Lorentz deformations of space-time and mo-
mentum-energy wave functions. Both of them have the same
Lorentz-deformation property. The major (minor) axis in the
space-time ellipse is conjugate to the minor (major) axis of the
momentum-energy ellipse. This figure explains why a hadron
appears as a tightly bound state of quarks to an observer in the
Lorentz frame where the hadron is at rest, while it appears as a
collection of free partons with a widespread momentum distri-
bution to an observer in the frame where the hadron moves
very rapidly. This figure is reprinted from Ref. 7.

where the parameter g ranges approximately between 0
and 1. This type of distribution was postulated by Feyn-
man in his parton picture of hadrons in the infinite-
momentum limit.

We can now integrate
~ p„(q-, qo) ~

over q„ to get the
momentum distribution function. There are three
quar ks in the proton, and the generalization to the
three-quark system is straightforward. In the large-g
limit, the momentum distribution function becomes '

p(g) =3M(1/2nn) ~ exp[ —(M /2n)(3( —1) ] . (19)

This form of the parton distribution function can be
compared with the experimental data. ' .

The parameter g is essentially Feynman's x whose
variation produces observable eA'ects. It is linear in the
q, variable, whose variation is generated by Nl and N2
of Eq. (11). Feynman's x variable is therefore a gauge-
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transformation parameter in the hadronic system with an
infinite momentum.

The author is grateful to Professor E. P. Wigner for
encouraging him to find a common physical ground for
his 1932 paper ' ' on the phase-space picture of quantum
mechanics and his 1939 paper on the Poincare group. '
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