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We discuss the central charge in continuous families of two-dimensional conformal field theories. In a
nonunitary conformal field theory the ¢ theorem does not hold: A critical line can have a continuously
varying central charge. This is illustrated with the bosonic-string ghost system and may pose difficulties
for attempts to formulate string theory on the space of 2D field theories.
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Recent progress in two-dimensional conformal field
theory (CFT) has led to important applications in string
theory and in the study of critical phenomena. Most at-
tention has focused on unitary theories, in part because
this assumption is a powerful constraint and leads to-
ward a classification, and in part because the spacetime
background of string propagation may be represented by
unitary CFT.'"3

In this Letter we address the behavior of both unitary
and nonunitary theories which possess a critical line of
renormalization-group (RG) fixed points. The repara-
metrization ghosts of string theory are the most impor-
tant example of a nonunitary theory. Indeed, when the
allowed backgrounds consist of all c =26 CFT’s, many of
which have no spacetime interpretation at all, it is only
the ghosts which make a string a string.

We reexamine carefully the conditions for the ex-
istence of a critical line and show how the central charge
may be computed perturbatively, completing arguments
of Zamolodchikov* and Cardy? for a line generated by a
conserved current. Zamolodchikov’s ““c theorem,” which
implies that the central charge is constant along such a
line, may fail to hold if Ward identities or operator prod-
ucts for a marginal operator are anomalous. This means
that for a theory with nonunitary degrees of freedom,
such as string theory, conformal invariance is not suf-
ficient to guarantee stationarity of the central charge in
the space of 2D theories. Of course, the ¢ theorem was
formulated for unitary theories, so there is no contradic-
tion, but this may pose problems in describing string dy-
namics on this space. We illustrate the issues with a de-
tailed analysis of the free-boson model and of the
bosonic-string ghost system. We conclude with remarks
on the impact for string theory.

Zamolodchikov’s remarkable ¢ theorem* states that
when a theory with action Sy is perturbed, So— So+.S’,
where S'=Xk; [d?wV;(w,w), there is a function ¢ on
the space of 2D theories which is stationary with respect
to «; if and only if Sy is conformally invariant. If Sy is
conformally invariant, then ¢ is equal to the central
charge.®

Unitarity is essential for the first part of the theorem.

The theory So requires a short-distance cutoff. By dif-
ferentiating correlation functions of stress-energy tensor
components, Zamolodchikov derives via a renormal-
ization-group equation for the cutoff theory that
Bioc/dk;=—128/B*Gy, where Gu=|z—z2'|*
x(®;d)|,~,. for fields ®; appearing in the expansion
of the trace of the stress tensor. Unitarity implies posi-
tive definiteness of Gjx, and it follows that the condition
d;c =0 implies B/=0 and the theory is conformally in-
variant. %’

The converse is more elusive. If /=0 and ThH =0, we
learn nothing from this relation since both sides vanish.
A different analysis is needed to show that 8 =0 implies
9d;c =0. In the case where there is a critical line of RG
fixed points, Cardy® states that not only is ¢ stationary,
but ¢=1 (or the theory is “decomposable” into theories
with ¢=1) along a line if there are no conserved spin-2
currents besides 7 and the marginal operator has no
mixing with other operators.

We proceed by computing the central charge ¢ directly
from the two-point function of the stress-energy tensor.
Below, and above, we take a Euclidean signature world
sheet with flat metric and we use complex coordinates
w=w,+iw,.

In a conformally invariant, RG fixed-point CFT, the
value of the central charge can be obtained? from
(T()T () =c/2(z—2")"

A perturbation has two consequences for (7T): S’
changes the measure with respect to which the correla-
tion function is taken, and S' may give an additional
piece to the stress tensor, T =( —4r//g)5S'/5g°.

We can calculate {TT)g ;s perturbatively around the
theory defined by S:

(To+ T To+ Te ~5')g, =<2
(z—2z")*

Expanding to first order in x,

Ac/2

(z—2z")*" ™

(TQT')50+ (T’TO)SO - (T()ToS')SO =
This must vanish for ¢ to be stationary.

We now consider a single, marginal operator>%°
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V(w,w) with dimensionless coupling constant x, generat-
ing a one-parameter family of CFT’s, S(x)=S,+S"
For S’ to give an invariant contribution to the action, V'
must have scaling dimension (1,1) for all values of «.
Therefore the operator-product expansion of V(z,z)
xV(z',z') cannot contain V. If there is a term VV
~C|z—=2z'| “?v(z',z'), the perturbation changes its
own conformal weight® and is “marginal” only for x =0:

MW)g 45 = |z=z'| 7*(01+«Cln|z—2z'|?)

~ |z —z'| ~4+¥C,

On the other hand, it is not necessary, as has some-
times been stated, to require that (V¥ (S')"s,=0 for all
n. It could be that these higher functions are merely
proportional to the free result: (VV(S)"s, o (VV)s,
Then the critical exponent remains unchanged in
<VV>50+ s» and the operator remains marginal. This is
illustrated below.

We consider now the important case of a marginal
perturbation where the marginal operator is a product of
conserved currents (which may be regulated by point
splitting and normal ordered), S'=(x/27)fd*W j.j-
The induced correction to the stress tensor is T'
=(x/2):jwjw:. Now j(w) should be a weight-(1,0)
current with the operator-product expansion?

(z—w)? z—w Gz—w)?’

If we evaluate (ToToV), and integrate, (T(ToS"
=(ToT" +(T'Ty), and then comparing with (1) shows
that Ac =0 to first order. This naive expectation is not
valid if (2) fails to hold. We check the validity of this
argument in two CFT’s with marginal perturbations:
first, the unitary Gaussian model, or free boson on a cir-
cle, and second, the nonunitary string ghost system.

Let us first show, perturbatively, that rescaling a field
or changing the compactification radius of a free boson
has no effect on the central charge. The free-boson
action is So=(1/2n)fd 229.¢ 9;¢, with stress tensor T

T()jw)~

— 1
=—7:0;¢00.¢:.

Observe that there is a weight-(1,0) current j, =id,¢
and a weight-(0,1) current j; = —id;¢, which combine

to form the marginal operator ¥V =9,¢0;¢9. We need
only the two-point functions of the currents, obtained
from {¢(z,2)¢(z",2'))=—In|z—2z'| %

(afod = Gsjod=n6P(z—12"). 3)

(z—2z")?%’
Evaluating (T¢To)s, at finite separation gives c=1.

Perturbing the theory, S'=xS( changes the normali-
zation, So— (1+«)So. The stress tensor picks up an
additional term T'= — (x/2):0,¢9.¢: =«To.

When the target space is a circle, there are primary
operators expl *+ i¢p(z)] and we identify p=¢+2x; i.e., ¢
lives on a circle of unit radius. The effect of S’ can be

absorbed by rescaling the fields, ¢— ¢(1+x)'/2, and
changing the compactification radius. (In this way one
can show exactly that ¢=1 for any radius, but we
proceed perturbatively.)

Because (TcT") =x(TTo#0, the individual contribu-
tions to Ac in (1) cannot separately vanish. Fortunately,
(ToToS')#OZ

éfdzwhjzjz::jzyjz'::jwj,;:>=(z_—ley.
The contributions to (1) cancel, so to first order Ac =0,
as expected. It is essential to retain the current-con-
serving contact term of (3) whenever we have antiholo-
morphic fields that will be integrated over the entire sur-
face.'?

Does ¢ remain constant to higher orders? Although
the main interest is the first correction, it is instructive
and amusing to compute the higher-order corrections:

1/2

(z—2z")*"

Several types of contractions contribute to the connected
part of the correlation function. Each contraction gives
an identical contribution after the integrations are per-
formed, using the formula fd?w(w—z) "2(w—z') ~2
=728(z—2'), which can be checked by integration by
parts. This yields the perturbation expansion for
<|T0|Toe =S to all orders, and it may be resummed for
k| <lI:

(ToTo(S) s, =(n+1)k"

_ 2. 1/2 — 1
(1 —2x+3x )(z—z')4 o2

The full two-point function is then given exactly as

=1+ K)z(T()T()e _S'>So=(T0T0>50 .

(T()To)s0 .

(T, +s

Therefore c(x) =c(0) =1 to all orders, the well-known
result that a free boson on a circle has a critical line of
c=1 theories. It was essential in perturbation theory
that the correlators with (S')” be nonzero and that con-
tact terms be retained.

A similar calculation finds that (VVe ~5)=(1+«) ~?
x{VV), so that the fields may be rescaled but the critical
exponent of the marginal operator is indeed unchanged.
It is this relaxed criterion that is appropriate for margin-
al operators. '

Next we consider a marginal perturbation to the non-
unitary CFT of the string reparametrization ghosts. The
theory is described by a b-c system'? of free anticom-
muting fields of spin A and 1—A, with action
So=/n)fd*w(bd5c+b8,c). The central charge is
c=1—3(Qx—1)% For A=+, the theory is unitary and
is equivalent to the free boson considered above with
c¢=1. For A =2, the theory is nonunitary and describes
the negative-norm ghosts of the bosonic string with
c=—26.

There is a weight-(1,0) fermion-number current j,
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=:bc:, classically conserved on a flat world sheet, which
has an anomalous operator product '? for A= & :
. 2 —1 j(z)
A e e e

For definiteness, we set A =2. From this current, a mar-
ginal perturbation may be constructed, ¥V =}, j, =bcbc.
This is just the conformally invariant Thirring interac-
tion. This theory is defined for k> —1 and has been
thoroughly studied in fermionic and bosonic form by
Freedman et al.'* For simplicity we use the bosonic
language and carry over our previous calculations.

We begin with the bosonic action corresponding to the
free fermionic theory, '2

+ finite . )

=1 (2 ot 3L (a2, S5

So 2”fd w9050+ 4nfd wVgR¢,
1, L3

Tot+To= > 10,00,0: > 959,

and perturb by adding V =j,j; =90.¢ 0,6, where j, is
now the bosonic current and V is the same operator that
appeared for the free boson. It is interesting that the
perturbation is proportional to a piece of the free action
in the bosonic formulation but not in the fermionic.'*
[This current (j,,j;) is conserved, 9 j,+ 0.j; =0, and
is dual to the anomalous fermion-number current'>!3
(—Jjw,jz).] The induced change in the stress tensor is
T'=xTo, as before. The only change from the free-
boson case is the “improvement term” in the stress ten-
sor, To=— % 9.J..
Expanding the two-point function {TT)g g,

(To+ TN To+Te ~S)s,+(ToToe 5s,,

the first term is the free-boson result, giving c=1. We
concentrate on the second term. The zeroth-order con-
tribution gives ¢=—27. The first-order contribution
from (ToToS") gives Ac =27x, and dc/dx=0. Solving to
all orders, we find (T(To(S")" = —27n!k"/2(z —z")*.

Hence c(x)=1—27(1 —x+«2---), which we resum
for | x| <1 to give the final result
27 27k
c(x) T+x 26 T+ r ()

in agreement with Ref. 13, where c(x) was computed
from the trace T4 by functional-integral and index-
theorem techniques.

Note that ¢(x) is monotonically increasing for the al-
lowed range x> 1 [continuing (5)], from c(—1) = —
to c(e0) =+1. ¢(x) has no stationary point, even for the
free theory kx=0. Although ¢ = 0 for x = 26, the theory
is never unitary. '’

We have taken a first step in studying the space of
nonunitary 2D quantum field theories. A vanishing 8
function is not sufficient to ensure that the central charge
is stationary on the space of 2D theories, and the ¢
theorem does not hold. The conformal Ward identities?
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do not suffice because a perturbation can be marginal
without being primary. Cardy’s result® that c=1 in a
unitary theory with a marginal operator required that
the operator have no mixing with other fields and that
there be no other spin-2 operators in the operator-
product expansions. However when there is a current,
0wjw can and generally does mix. Such currents can be
the very reason that the marginal operator even exists,
and we have seen how to account for their mixing.

All we used, in fact, is the stress tensor and the cur-
rent structure of the perturbation. The obstacle to deriv-
ing results for arbitrary ¥V(w,w) is that without some
knowledge of the structure it is difficult to treat the con-
tact terms mixing w and w and to relate ¥ to T'. For
relevant perturbations, the latter problem is absent. For
the supersymmetric ghost action with a Thirring interac-
tion, ¢(x) is linear,'® and hence nowhere stationary. We
have not studied this theory, but presumably higher-
order contributions to ¢(x) vanish by supersymmetry.

Coupling this system to a “matter” CFT with ¢ =26
yields a combined ¢ =0 unitary string theory, and one
can ask what happens to the coupled system when the
ghosts are given a marginal or a relevant perturbation.
How does this drive changes in the matter? (The matter
system itself, to describe physical Minkowski spacetime,
also contains a nonunitary degree of freedom for the
timelike polarization of the string.)

These considerations may be relevant for attempts to
formulate string theory on the space of all 2D field
theories.””!” In this approach, motivated by the many
appealing features of string perturbation theory, the con-
formally invariant theories are identified as the “classical
solutions” to the “equations of motion,” and the ¢ func-
tion plays a special role as a candidate action whose sta-
tionary points correspond to these perturbative ground
states. Critical lines represent connected degenerate va-
cua. In this language it is possible to begin formulating
questions about tunneling and nonperturbative effects. If
we take the proposal seriously, we should include the
ghost degrees of freedom. But the classical solutions will
be unstable against perturbations of the ghost degrees of
freedom, and some other principle (e.g., Becchi-Rouet-
Stora-Tyutin invariance) besides vanishing total central
charge may be needed to stabilize the theory.
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Note added.— After this work was completed, we
learned of an interesting paper by Elitzur, Giveon, and
Rabinovici'® in which a different deformation of the free
massless b-c ghost system is discussed. These authors
consider a mass term, a relevant operator which breaks
conformal invariance and generates a RG flow to a ¢=0
theory. Hence they consider the family of free, massive
theories flowing from a critical point, whereas above we
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considered the family of interacting, massless conformal-
ly invariant theories along a critical line of fixed points.
In Ref. 18, conditions are given where stationary ¢ does
not imply conformal invariance, and above we have given
conditions where conformal invariance does not imply
stationary ¢. In both of these cases, it is possible for the
central charge of the ghost theory to increase. It would
be desirable to understand both types of perturbations
together as part of the set of all perturbations of a CFT.
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