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We present an approximate solution of the Einstein equations for the metric outside a monopole re-
sulting from the breaking of a global O(3) symmetry. The monopole exerts practically no gravitational
force on nonrelativistic matter, but the space around it has a deficit solid angle, and all light rays are
deflected by the same angle, independent of the impact parameter.
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Phase transitions in the early Universe can give rise to
topological defects of various kinds.'?> The type of de-
fects depends on the topology of the vacuum manifold u.
In particular, monopoles are formed when u contains
surfaces which cannot be continuously shrunk to a point,
that is, when 7>(u)=1. Monopoles formed as a result of
a gauge-symmetry breaking are similar to elementary
particles. Most of their energy is concentrated in a small
region near the monopole core. Grand unified theories
predicting such monopoles usually predict too many of
them,’ and one has to involve inflation to resolve the
problem.

In this paper we would like to consider global mono-
poles, resulting from a global symmetry breaking. Such
monopoles have Goldstone fields with energy density de-
creasing with the distance only as » ~2, so that the total
energy is linearly divergent at large distances. The large
energy in the Goldstone field surrounding global mono-
poles suggests that they can produce strong gravitational
fields. By analogy with global strings*> one couild even
expect the corresponding metric to be singular. The
main purpose of this paper is to derive the solution of the
Einstein equations for the metric outside a global mono-
pole. We shall then examine light propagation in that
metric. Finally, we shall briefly discuss nongravitational
properties of global monopoles and their cosmological
evolution.

The simplest model that gives rise to global monopoles
is described by the Lagrangian

L=%a“¢uay¢a_;_7\'(¢11¢11_n2)2’ (1)

where ¢ is a triplet of scalar fields, a =1,2,3. The mod-
el has a global O(3) symmetry, which is spontaneously
broken to U(1). The field configuration describing a
monopole is

o=nf(r)xr, )

a0 =

where x“x?=r2. The most general static metric with
spherical symmetry can be written as

ds?=B(r)dt>— A()dr’—r’(d6*+sin’6dg>)  (3)

with the usual relation between the spherical coordi-
nates, r,0,¢, and the ‘“Cartesian” coordinates x?. The
field equations for ¢ in the metric (3) reduce to a single
equation for f(r):

'

£=2 ==,

(4)

The energy-momentum tensor of the monopole is given
by

2,70 242
T,'=—LL+—Q-',L-+;—XU4(]3——1)3,
2A r-
2,72 242
Tr=— L NSyt —1)2 (5)
2A r2
T@9=T§=ﬂ§_§+l—)\n4(f2—l)z.

In flat space the monopole core has size §~i ~'/2p 7',
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Its mass is
(6)

For n<mp, where mp is the Planck mass, we expect
that gravity does not substantially change the structure
of the monopole at small distances, so that the flat-space
estimates of § and M. still apply. Outside the core®
f(r) =1 and the energy-momentum tensor can be ap-

Mcurc~}\n45}~>\f - ]/3’7 .

1= =876 (Trrg =1 — 2 _ 82Gn? (
A 1 , fOT,r dr=1—8nGn , J:)

Comparing this with Eq. (8) we find

o o2 2
M =4xn’ L Lol (=12 | 2ar
0o |24 2
(10)
The integral in Eq. (10) is of the order of
§~A""Y2n7' and thus M ~Myw. For reasonable

values of n and A this mass is totally negligible on the as-
trophysical scale. [We note in passing that the metric
(8) with a large value of M, M > §/G, describes a black
hole of mass M carrying a global monopole charge.
Such a black hole can be formed if a global monopole is
swallowed by an ordinary black hole.] Neglecting the
mass term and rescaling the r and ¢ variables, we can
rewrite the monopole metric as

ds>=dt’—dr’— (1 —87Gn>)r’(de*+sin’0de?). (1)

The metric (11) describes a space with a deficit solid
angle. The area of a sphere of radius r is not 4zr?, but
47(1 —8xGn?)r>. The surface =r/2 has the geometry
of a cone with a deficit angle

(12)

By symmetry, all surfaces passing through the origin and
cutting space into two symmetric parts have the same
geometry. A striking feature of the metric (11) is that
the monopole exerts no gravitational force on the matter
around it (apart from the tiny gravitational effect of the
core). This can be understood qualitatively if we note
that the Newtonian potential ®=GM (r)/r =const, since
M(r) «cr. Some properties of the monopole metric are
similar to those of the metric for a gauge cosmic string,®

ds’=dt>’—dz>—dr’— (1 —8Gu)ride¢’, 13)

in which all surfaces z =const are cones with a deficit
angle A=8nGu, u being the mass per unit length of
string. An important difference is that the monopole
metric is not locally flat.

We now turn to light propagation in the gravitational
field of a global monopole. Consider a light signal prop-
agating from source S to an observer 0. Without loss of
generality we can assume that both S and O lie on the

A=871°Gn*.
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proximated as
T/ =T/=n’/r’, T{=T§=0. @)
The general solution of the Einstein equations with this
T, is
B=A"'=1-8xGn’—2GM]/r,
where M is a constant of integration.

To estimate the value of M, we use the general rela-
tion’

(8)

9

surface 8=n/2. Then it is clear from the symmetry that
the whole trajectory lies on that surface. Moreover, it is
easily verified that the geodesic equation describing light
propagation on the surface §=7/2 of the metric (11) is
identical to that on the surface z=const of the cosmic
string metric (13) with the same deficit angle. The prob-
lem is thus reduced to the problem of light propagation
in the metric of a cosmic string.g'lo If S, O, and the
monopole (M) are perfectly aligned, then the image has
the form of a ring of angular diameter

Soo=8r>Gnld+1)"", (14)

where d and / are the distances from the monopole to the
observer and to the source, respectively. If SM and OM
are misaligned by a small angle a < A, then the observer
will see two point images separated by an angle §¢¢ given
by Eq. (14). Note that 8¢, is independent of a. It is
easily shown that the brightness ratio of the two images
is given by the ratio of the impact parameters of the cor-
responding light rays. This is an important difference
from the case of cosmic strings, in which the two images
have equal brightness.

The subscript of §¢¢ refers to the fact that the mono-
pole was assumed to be at rest with respect to the ob-
server. As we shall explain shortly, cosmological mono-
poles are expected to move at relativistic speeds, and so
Eq. (14) has to be generalized to the case of a moving
monopole. The same argument as in Ref. 10 gives

So=v7 '(1 —n-v) '8¢, (15)
where n is a unit vector along the line of sight, v is the
monopole velocity, and y=(1—0v2) ~'/%,

For a typical grand unification scale n~10'® GeV, the
angular separation (14) is of the order of 10 arcsec and
is certainly within the observable range. The crucial
question now is what is the expected density of global
monopoles. In the rest of this paper we would like to
make some comments on the cosmological evolution of
global monopoles, which may help to answer this ques-
tion.

Let us first consider a monopole-antimonopole (MM)
pair. The energy of the pair is E~n’R, where R is the
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MM distance. The attractive force acting on M and M
is F=9E/dR~n* and is independent of the distance.
Under the action of this force, M and M oscillate and
lose their energy by emitting Goldstone bosons. If the
MM separation is greater than the core radius, R > §,
then the motion of the pair is relativistic. The energy-
loss rate £ can be roughly estimated'' if we note that the
energy flux is 7°~9,0%9;¢°. At a distance r~R from
the pair, 8,¢°~9,0°~n/R and T®—~n?/R?. Hence,
E~T;R*~n?, and the lifetime of the pair is t~R. We
see that the Goldstone-boson radiation is a very efficient
energy-loss mechanism. As the pair loses its energy the
MM separation decreases, and when it becomes ~ &, the
pair annihilates.

The large attractive force between global monopoles
and antimonopoles suggests that MM annihilation is
very efficient and that the monopole overproduction
problem does not exist. In fact, it can be so efficient that
not a single monopole will be left within the observable
Universe. One can draw the analogy between global
monopoles and quarks, which also interact with a force
independent of the distance. We do not expect any free
quarks to be left after the quark-hadron phase transition,
so why should we expect any global monopoles? An im-
portant difference here is that even if two quarks get
separated by a large distance, the gluon “string” con-
necting them can easily break up producing quark-
antiquark pairs. The probability of producing an MM
pair by the Goldstone field is proportional to
exp(—kMZ./F)~exp(—k'/r), where k and k' are nu-
merical coefficients. For small A this probability is negli-
gibly small. One can also draw the analogy between glo-
bal monopoles and monopoles connected by strings, for

which it is known'? that large MM separations are ex-
ponentially suppressed, and so no MM pairs are expected
to survive in the observable Universe. But again there is
an important difference. Unlike monopoles connected by
strings, a global monopole is not paired with any particu-
lar antimonopole, and it is not clear how efficiently it can
find a partner. A convincing analysis of global monopole
evolution will probably require a numerical simulation.
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