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The equilibrium quasicrystal phase of a two-dimensional two-component Lennard-Jones atomic sys-
tem and two different ensembles of random tilings (binary and unconstrained) are analyzed by means of
Monte Carlo simulations. We find that the quasicrystal phase in the atomic system is well described by
the random-tiling model. Despite the nonzero configurational entropy density, the phason fluctuations
are found not to destroy the quasi-long-range translational order in this phase, in agreement with conjec-
tured square-gradient phason elasticity. Nearly identical, temperature-independent, reduced, phason

elastic constants are determined in all three cases.

PACS numbers: 61.50.Em, 02.70.+d, 61.40.+b, 62.20.Dc

The recent experimental discovery'™ of stable quasi-
crystalline materials with resolution-limited Bragg peaks
brings to the fore those equilibrium models with long-
range translational order. One such model is the quasi-
periodic crystal model (the prototype for which is the
Penrose tiling).*® In the quasiperiodic crystal model,
the system is assumed to possess a quasiperiodic ground
state; i.e., the quasicrystal is stabilized primarily by ener-
getic considerations.

On the other hand, a simple atomic Lenndard-Jones
(LJ) system in two dimensions suggests a different, en-
tropically dominated mechanism for quasicrystal stabili-
zation.” Two years ago, a simulation by Widom, Strand-
burg, and Swendsen of this atomic system showed that
the system freezes into a phase possessing an apparent
tenfold symmetry whose configurations are tilable with
the Penrose rhombuses. However, the configurations
displayed no apparent preference for a particular
rhombus arrangement. Indeed, considerable tile rear-
rangement was observed even at very low temperatures
in the quasicrystal phase.

These observations suggest a random-tiling picture of
the quasicrystal phase.® In the random-tiling picture it
is the large entropy available from many nearly degen-
erate tile rearrangements which stabilizes the quasicrys-
tal phase. Such a quasicrystalline phase may easily be
the equilibrium state over some temperature range for a
system whose ground state is periodic. A random-tiling
quasicrystalline phase requires only that the energetics of
the system stabilize the appropriate local packing units
and that the differences in energy between various pack-
ing arrangements be small relative to the melting tem-
perature of the material.

In this paper we explore the random-tiling and atomic
models. While the atomic model is not intended to be a
good representation of a particular material, we do ex-
pect its properties to be quite general. Indeed, Lancon et
al.>'® have shown that if the model is truncated to
nearest-neighbor interactions, the random tiling is the
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ground state of the atomic model over a wide range of
choices of the Lennard-Jones interaction strengths. In
the truncated approximation, the energy of a tiling de-
pends only on the concentration of fat and thin rhom-
buses and not on their arrangement. The long-range
tails of the full Lennard-Jones interaction breaks this de-
generacy between different tilings but, as we show here,
the random-tiling picture remains appropriate over a
broad temperature range.

In this paper we present the following results obtained
by Monte Carlo (MC) simulation: (i) The atomic sys-
tem is shown to possess quasi-long-range translational
order and no average phason strain in the quasicrystal
phase. (ii) The random-tiling model is also shown to
possess quasi-long-range translational order in confir-
mation of the Henley'' and Elser'? conjecture of a
square-gradient entropic phason free energy given in the
absence of dislocations by F/kgT =3 K [IV;h,;(r)1%d?r,
where K is a phason elastic constant. (iii) The reduced
phason elastic constants are obtained for both the atomic
system and the appropriate random-tiling model. They
are in agreement, showing that the random-tiling model
is an appropriate description of the atomic quasicrystal-
line phase. The reduced phason elastic constant for the
atomic model is temperature independent in the quasi-
crystal phase as is to be expected for an entropy-
dominated term in the free energy. (iv) Reduced phason
elastic constants for two different random-tiling models
are obtained and are found to be numerically indistin-
guishable.

Figure 1 shows an atomic quasicrystal configuration
obtained by our Monte Carlo simulation. The atoms in-
teract with Lennard-Jones potentials
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where a and B refer to large (L) and small (S) atoms.
The o, are chosen according to the tile decoration
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FIG. 1. Configuration of the two-component LJ atomic sys-
tem at 7=0.05. The corresponding binary tiling, defined in
Ref. 10, is obtained by joining near-neighbor large-small pairs.

shown in Fig. 1 to be o;5=1, oy, =2sinz/5, and osg
=2sinn/10. The €,3 are chosen so as to discourage
phase separation into single-atomic-species phases and
set arbitrarily at e;; =ess =7+ €,5. The numbers of
large and small atoms are chosen as appropriate for a
quasiperiodic tiling.

In the absence of “untilable defects,” the position of
every atom in such a configuration can be described as

4
r=ag Z_:On,,e"l+u(R)ER+u(R) , )

where e} =(cos2ra/5,sin27a/5), a;s is the average spac-
ing between neighboring large and small atoms, {ng '3
are integers, and u(R) is a small displacement from the
vertex R of a superimposed tiling. In the ideal tilings
corresponding to these atomic configurations, the large
atoms sit at vertices whose angles are all odd multiples of
n/S and the small atoms sit at vertices whose angles are
all even multiples of z/5 (see Fig. 1). Thus, the ensem-
ble of possible rhombus configurations corresponding to
the low-temperature atomic configurations is the set of
binary tilings. '°

Any tilings by Penrose rhombuses can be represented
by regarding the sets of integers {n,} as sites on a 5D hy-
percubic lattice.'*!* A decagonal tiling is obtained
whenever the lattice points representing a particular til-
ing lie in a 2D strip of the appropriate average orienta-
tion. The displacement of the strip from a flat surface at
the decagonal orientation is conveniently described by

the phason or perpendicular-space coordinates® !4
4 4
h(R) =3 neel, h.R)=2""2% n,, 3)
a=0 a=0

where e;- =(cos4ra/5,sindrna/5).

Depending on the severity of the fluctuations of this
strip translational order may or may not be preserved.
In a decagonal glass, for example, this strip will have

FIG. 2. Basic moves for the tiling simulations: (a) hexago-
nal flips, and (b) an octagon flip, corresponding to switching a
large atom and two small atoms.

“tears” and translational correlation lengths will be
finite.'> The fact that a tiling is, by definition, space
filling requires that the strip be continuous although it
may, in principle, still have large enough fluctuations to
destroy the translational order.

If a square-gradient form for the phason entropy turns
out to be correct, the 2D random tilings, like 2D crystal-
line solids, will possess quasi-long-range translational or-
der characterized by
2

N R

2
1 1

—_—— ! = l + 4

h(R) ;h(R) > 2nK nN+const (4)

and power-law divergent diffraction peaks whose intensi-
ty goes as

1Q")~I(QHN> "0 (5)
where
Q0 = 1Q*| 4. (02 ©)

and a large number N of atoms or vertices and proper
boundary conditions are assumed. Here K is a reduced
phason elastic constant, and the scattering wave vector
Q' and phason momentum (Q*,Q;*) are complementa-
ry components of the reciprocal-lattice vector of the 5D
hypercubic lattice.!> The last term in Eq. (6) takes a
nonvanishing value if the projection strip is rough in the
h, direction also.'® The angular brackets in Eq. (4)
denote an ensemble average.

Our basic MC moves for the unconstrained and binary
random tilings are the hexagon and octagon flips shown
in Fig. 2. It can be shown that these moves satisfy the
detailed balance condition needed to generate equilibri-
um distributions with a fixed stoichiometry.'® We stud-
ied tilings of 76, 199, 521, 1364, and 3571 rhombuses
with rhombic periodic boundary conditions. These num-
bers are chosen to obtain best approximations to the zero
phason strain rhombus ratios for a given system size. In
the binary-tiling case, they correspond to systems of Fy
large atoms and 2F - small atoms, where Fy is the kth
Fibonacci number. A typical simulation consisted of an
equilibration stage, followed by a run of 10000-30000
MC steps per tile. A test run on a sixfold rhombus til-
ing!” over eight different sizes ranging from 24 to 864
tiles yielded the exactly known elastic constant within
the estimated error bars.

The MC simulations of the atomic quasicrystal were
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carried out as described by Widom, Strandburg, and
Swendsen.” Previously, they demonstrated that between
a high-temperature liquid phase and an unknown low-
temperature state lies a quasicrystal phase, possessing
long-range decagonal order. The nature of the transla-
tional order and phason fluctuations in this phase were
not analyzed.

Here we study systems ranging in size from 100 to
1000 atoms at 7 =0.05 (in units of €;5) and from 100 to
545 atoms at 7=0.1, 0.125, and 0.2. Melting occurs be-
tween 7=0.2 and 0.125. Phason-phason correlations
complicate the analysis at 7=0.125 but lead to results
for the phason elastic constant consistent with those at
T=0.05 0.1. Therefore we discuss here the data for
T=0.05 and 0.1.'® Further details of these atomic simu-
lations may be found in Ref. 18. About 16000 MC steps
per atom were performed for each temperature and size.
Free boundary conditions were used for the simulations
and the atoms near the boundary were discarded for the
analysis. These simulations were performed by begin-
ning with a decorated tiling and running at low tempera-
tures. Equilibration was checked by comparison with re-
sults of cooling runs for 7=0.05 and N =289.

Equation (4) is observed to hold in all three models
over the range of system sizes studied (see Fig. 3) within
the accuracy of the data.!® The elastic constant K is
found to be 0.60+0.02 for the unconstrained random
tiling and 0.625 *+0.025 for the binary random tiling.
The latter is to be compared with the transfer-matrix re-
sult of 0.60 given by Widom, Deng, and Henley.?® Ap-
parently, the binary-tiling restriction does not change K
appreciably.

For the atomic model, we find K=0.63*+0.03 at
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FIG. 3. Mean-square deviation of the perpendicular-space
coordinates [see Eq. (4)] vs logarithm of system size N for the
LJ system at 7=0.05 (0) and 0.1 (@) and for the binary (&)
and unconstrained (¢ ) random tilings. The lines through the
data correspond to K =0.60 (0), 0.63 (0), 0.60 (¢ ), and 0.625
(&), respectively. Error bars for the random tilings were com-
parable to the size of the plotted symbols.
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T=0.1 and 0.60+0.06 at 7=0.05, giving us direct evi-
dence for the validity of the random-tiling description of
the atomic quasicrystal phase. The fact that K is the
same to within statistical errors at both temperatures
confirms the basically entropic nature of this phase. In
contrast, two possibilities exist for a system with a
Penrose-pattern ground state. Either the system will be
pinned, i.e., nondivergent phason fluctuations, or the sys-
tem will be unpinned with logarithmically diverging
phason fluctuations. The unpinned case differs from the
random-tiling case, however, in that the phason elastic
constant K will be temperature dependent. '%2!

In principle, the prefactor to the logarithm in Eq. (4)
will have an additional term due to the coupling of
phasons to phonons which could be temperature depen-
dent. We measured the phason-phonon correlations in
our atomic system and found them negligible at 7=0.05
and 0.1, though large variations in their magnitude and
sign hindered a precise determination.

The scaling relation (5) is also observed to hold for all
the models at a number of peaks studied. The exponent
n shows a nearly parabolic dependence on Q* and no
apparent systematic dependence on |Q"| [see Eq. (6)
and Fig. 4]. For the atomic model, this dominance of
phason fluctuations attests to the small effect of phonons
in this temperature range, further validating the
random-tiling approximation.

The third component of the phason coordinates 4, (R)
is restricted to one of three values in the atomic system
and in the binary tilings but is unrestricted in the uncon-
strained random tilings. Although A.(R) is a discrete
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FIG. 4. Diffraction intensities vs logarithm of system size N
for the unconstrained random tiling at a number of peaks stud-
ied. Inset: Slopes for each set of data at a given peak vs the
square of the phason momentum |Q<|, with Q. =0 (@) and
=+ 27/5 (O). The straight lines correspond to K =0.61.
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variable, it also exhibits behavior consistent with a
square-gradient free energy, with an elastic constant
K, =0.575%0.030. (This behavior is analogous to that
of a solid-on-solid model in the rough phase.?®!7%2

In conclusion, we have demonstrated that in a 2D
two-component LJ system, between the high-tem-
perature binary liquid and a presumably ordered but un-
known low-temperature state, there lies an entropic
quasicrystal phase. This equilibrium quasicrystal is well
described by a random-tiling model. The conjectured
square-gradient form of entropy density is verified
through the observation of logarithmically diverging
phason fluctuations in the binary and unconstrained ran-
dom tilings, and in the atomic system. Additional evi-
dence for the quasi-long-range translational order is pro-
vided by the observation of power-law divergences of the
diffraction peaks in these systems. The reduced phason
elastic constant is determined for the three systems and
is found to have a value of ~—0.6 in all three cases. Fu-
ture work should attempt to understand the apparent
agreement of the reduced phason elastic constants for
these distinct models. Questions concerning the nature
of the T=0 phase and a possible low-temperature transi-
tion will also have to be answered.

Finally, we briefly address the question of experimen-
tally distinguishing a quasiperiodic crystal phase from a
random-tiling quasicrystal (since both models predict
Bragg peaks in three dimensions). Studies of tempera-
ture dependence of Debye-Waller factors and diffuse
scattering'> will probe the phason elastic constants. If
phason-phonon coupling is small, the random-tiling pic-
ture predicts, for example, temperature-independent
Debye-Waller factors over a broad temperature range.
Preliminary results from the study of the atomic model'®
indicate a reduction in peak intensity near melting due to
phason-phonon coupling. Further exploration of this be-
havior, particularly in a three-dimensional model, would
be helpful for more precise predictions of experimental
observables.
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