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The Landau theory of shape transitions in hot rotating nuclei is applied to even-even rare-earth nuclei
from cerium to hafnium. The parameters of the Landau expansion are extracted from microscopic cal-
culations based on the Nilsson-Strutinsky procedure, and are shown to follow simple systematics. In
particular, the systematics of the critical temperature and the critical angular momentum of the shape
transitions as functions of neutron and proton number are investigated. Simple rules are provided for

the behavior of these quantities.

PACS numbers: 24.60.Dr, 27.70.+q

Recent experiments are providing new information on
the properties of hot nuclei formed in heavy-ion fusion
reactions. !> Experimental tools involve measurements of
the spectra of y rays as well as light particles emitted
from the compound nucleus during its cooling process.
Of special interest is the evolution of the nuclear shape
as a function of temperature and angular momentum
and, in particular, the predicted prolate-to-oblate shape
transitions. Recently a unified framework based on the
Landau theory of phase transitions was introduced to de-
scribe the universal features of the nuclear shape transi-
tions.®"® In particular, a universal phase diagram
emerged in terms of a certain “reduced” temperature
and a scaled angular velocity. The unfolding of this dia-
gram to the experimentally accessible variables— exci-
tation energy and spin—requires the knowledge of cer-
tain parameters which are specific to the nucleus under
consideration, are not universal, and should be deter-
mined from the experiment or from microscopic models.
We have performed microscopic calculations for all
known even-even isotopes of the rare-earth elements and
extracted their respective Landau parameters. In partic-
ular, we have calculated the critical temperature and an-
gular momentum of the shape transitions for these nuclei
and found that they follow a rather simple systematic
trend. In addition, all free-energy surfaces of these
rare-earth nuclei are now available in a compact para-
metrized form for 7.<S3 MeV. In this Letter we present
the most important features of our systematics. The
complete account of our investigation is reported else-
where. %10

We start with a brief review of the Landau theory of
the nuclear shape transitions.® The relevant macroscopic
variables of a hot rotating nucleus are its excitation ener-
gy E* and spin J. Technically, it is more convenient to
work with their intensive partners, the temperature T
and angular velocity . In analyzing shape transitions

the quadrupole deformation parameters a, play the role
of the order parameters with respect to which the
nuclear free energy F should be minimized. Since
F(T,w,a3,) is a rotational scalar, it must be built out of
invariant combinations of ay,’s and @. w-independent
invariants are considered up to fourth order in a;, and
w-dependent ones—up to second order in w. Instead of
az, we can use the parameters f3, y to describe the defor-
mation of the nucleus in the intrinsic principal frame and
the Euler angles Q to describe the orientation of the nu-
cleus with respect to the rotation axis @. Minimizing F
with respect to Q, we find that the nucleus in equilibrium
rotates around a principal axis with the largest moment
of inertia. We call this axis z. F then has the general
form®

F(T,0,a,) = Fo(T)+A(T)p*— B(T)B>cos3y
+C(Mp*— 7. (B,7,Nw?, (0
where the moment of inertia is

I, =1¢(T) —2R(T)Bcosy

+21,(T)B*+2D(T)B?*sin%y. )

The temperature-dependent coefficients A, B, C, Iy, R,
I,, and D are phenomenological parameters which are
not determined by the Landau theory. However, the to-
pography of the free-energy surfaces (1) depends only on
certain combinations of these parameters which have
simple behavior. Thus in the D=0 case (rigid body mo-
ment of inertia) the relevant dimensionless combinations
are the reduced temperature t=AC/B? and o/o.,
where w.= 5 (B/C)(B/R)'? is a critical angular ve-
locity. In these reduced variables a universal phase dia-
gram emerges as described in Ref. 6. It shows rapid
changes of nuclear shapes near the so-called tricritical
point at 7, = %5, w =w.. The values of the temperature
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and angular momentum which give the critical values of
7 and o depend on the functions A(7),B(T), ... and
thus on the nucleus under consideration. We have inves-
tigated the systematics of these functions for the even-
even rare-earth isotopes between Z=58 and 72. For
that purpose we have calculated their free-energy surface
at w =0 by using a Nilsson-Strutinsky procedure. The
standard Nilsson single-particle Hamiltonian,

__h? 1 2.2
h=——"—A+—mX wix]
2m 2
—xhwol2l-s+u(>—UDM)], 3)

was used where the frequencies w; were parametrized
according to Hill and Wheeler, '

1/2
i] ﬂcos[y—z—”kH s 4)

Wi = woexp

4r 3

and (I?)y is the expectation value of /2 in a major oscil-
lator shell N. For all rare-earth nuclei we used '?

k=0.0637, n=0.420,

hwo=414 "' 1+ LN , for neutrons,
3 A
(5)
k=0.0637, u=0.60,
haoo=414 ~3|1 —%u], for protons ,

where A wg is given in MeV. We used a BCS model with
a monopole pairing force to calculate the oscillating part
of the pairing energy. The pairing matrix element was
taken to be isospin dependent and proportional to the nu-
clear surface area (for deformed shapes) as in Ref. 13.
The effect of pairing was found to be negligible for
T20.5-0.8 MeV. The Strutinsky normalization can be
generalized ' to finite 7 but in the temperature range of
our interest it is sufficient to use the cold-nucleus approx-
imation in the calculation of the average energy E. In
the liquid-drop energy we have allowed for large defor-
mations by taking the exact Coulomb and surface ener-
gies expressed as elliptic integrals.

Except for few surfaces at very low temperatures, all
surfaces were found to have the topography predicted by
the universal Landau expansion (1) with @ =0, the case
we consider at the moment. We have mapped the calcu-
lated free energies on a simple form (1) using the uni-
form mapping technique explained in Refs. 6 and 9.
This technique permits reliable extraction of a set of the
parameters functions Fo(T), A(T), B(T), and C(T).
They turn out to have simple systematics as functions of
N and Z of the nucleus.

Figure 1 shows, e.g., A(T) for different erbium iso-
topes in the temperature range 72 0.8 MeV. A is the
most crucial parameter in the Landau theory and con-
trols the curvature of F at f=0. The transition of a
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FIG. 1. The Landau parameter A(T) for various erbium

isotopes as calculated microscopically (see text). All curves
converge to a common value = 30 MeV for 7= 3 MeV.

prolate-to-spherical shape at w =0 occurs near the tem-
perature 7. where 4 changes sign. The values of A4 are
very sensitive to shell effects. For mid-shell nuclei,
which are strongly deformed in their ground state, A
starts large in magnitude and negative and increases
monotonically with 7 towards positive values. Such nu-
clei undergo prolate-to-spherical shape transition in the
absence of rotations. Rotations change this into
triaxial-to-oblate transition as discussed in Ref. 6. For
nuclei near the closed shell, 4 starts positive and de-
creases monotonically but never becomes negative. Such
nuclei start and stay spherical but become softer with in-
creasing T. Above T~3 MeV all nuclei have approxi-
mately the same 4 (~30 MeV) due to the disappear-
ance of shell effects. A complete set of tables and dia-
grams of the parameters Fy, 4, B, and C is presented in
Refs. 9 and 10.

Figure 2 shows the critical temperature T, versus neu-
tron number for the even-even rare-earth nuclei. 7. is
very close to the temperature at which t=1.. On the
phase diagram of deformed nuclei® the value of 7. deter-
mines the position of the line of triaxial-to-oblate shape
transitions near J==0. Qualitatively, rapid transition
from almost prolate-to-oblate shape is expected in the vi-
cinity of this line. The systematic of T is strikingly sim-
ple. For each family of isotopes between two closed neu-
tron shells the values of T, fall on an inverted parabola-
like curve whose maximum is at the mid shell. The
curve drops rapidly towards shell closure. This is of
course consistent with the A4 systematics of Fig. 1. For
various families the parabolalike curves are arranged like
onion shells where the most inside shells correspond to
isotopes near proton shell closure at Z=50 and 82 and
the outside shells are in the region of proton mid shell,
ssDy. The largest critical temperature of 7.=1.85
MeV is found in mid-neutron-shell isotopes of Gd, Dy,
and Er.

The respective critical excitation energies E* which
correspond to the above critical temperatures are dis-
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FIG. 2. (a) The critical temperature 7. and (b) the corre-
sponding critical excitation energy EX as functions of neutron
number for even-even rare-earth nuclei. The maximal value of
T, occurs near the neutron mid shell (N =104) for a given iso-
tope family and near the proton mid shell (Z=66) among vari-
ous families. Shape fluctuations are largest in the vicinity of
(EE,J0).

played in Fig. 2(b). We emphasize that the calculation
of Fog, A, B, and C and T. and EFX above requires only
the knowledge of the @ =0 (no rotation) surfaces.
Finally, we consider the angular momentum J, which
corresponds to w =w,, i.e., J. =I,,w.. Large shape fluc-
tuations are expected in the vicinity of (E*,J.) on the
phase diagram. J, is shown in Fig. 3 for various rare-
earth isotope families. The moment of inertia requires
the knowledge of the parameters I, /|, R, and D in Eq.
(2). We have calculated them using the rigid body ex-
pressions to first order in deformation, i.e., Ip= 2 mR3§,
R=(5/16x)'2I,, and D=I,=0. We note that since
w.~B3?/C we expect the J. systematics to be dominat-
ed by the B systematics. B, on the other hand, governs
the prolate-oblate asymmetry of the free energy l[at
A= 0 the prolate-oblate free-energy difference is AF
=7 (B*C?)]. One can apply the Hill-Wheeler
“thirds of the shell” rule'! according to which prolate
ground-state deformation dominates in the first two-
thirds of the shell while oblate deformation is typical for
the last third. It is thus expected that B=0 around
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FIG. 3. The angular momentum J, at the tricritical point vs
neutron number for rare-earth nuclei. J. is maximal around +
of the shell (N=96) and drops to zero around % of the shell

(N=112). Shape fluctuations are largest in the vicinity of
(EX.,J.).

two-thirds of a filled shell and is expected to be maximal
around one-third of a filled shell. The behavior of J, in
Fig. 3 tends to support the foregoing analysis with J, ris-
ing rapidly from neutron shell closure at 82 to a max-
imum in the neighborhood of the end of the first third of
the shell (/N=96) and then proceeds to fall towards zero
at the end of the second third of the shell (NV=112). An
approximate proton thirds-of-a-shell rule is also observed
by inspecting the various curves in Fig. 3. The proton
shell closures are 50 and 82 and so the “most outside”
curves correspond to nuclei with 60-62 protons (Nd and
Sm) while the “most inside” curves to 70-72 protons
(Yb and Hf).

In general, the values of J. are relatively small
[<S(10-15)A] indicating that the transitions are very
close to being second order (cf. Ref. 6).

The approximation of using rigid body moment of in-
ertia in the calculations of J, is good if the critical tem-
perature 7. = 0.5-0.8 MeV so that pairing is negligible.
For some transitional nuclei where T, is lower the effect
of pairing on the moment of inertia is important and thus
pairing should be included in the w0 microscopic sur-
face calculations. Pairing can also be incorporated in the
Langau theory by adding a pairing gap order parame-
ter.
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