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Negative Thermal Expansion of Diamond and Zinc-Blende Semiconductors
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Experimentally it is well known that diamond and zinc-blend semiconductors show an "unusual" (i.e. ,

negative) thermal expansion at about 100 K. We performed density-functional-theory calculations of
thermodynamic potentials (i.e. , total energies and entropies) for perfect crystals, to study the tempera-
ture dependence of the lattice parameter. The origin of the negative expansion eff'ect is traced back to
the entropy contribution of the Gibbs free energy.

PACS numbers: 64. 10.+h, 65.50.+m, 65.70.+y

For diamond and zinc-blende semiconductors the
linear thermal expansion coefficient, a =(1/a)(8a/8T)~,
where a is the crystal lattice parameter, is not a constant
of temperature, and at low temperatures it even becomes
negative. ' Thus, the lattice contracts upon heating. Fig-
ure 1 shows the experimental result for silicon as open
circles. In this paper we present a parameter-free ap-
proach to calculate thermodynamic potentials from first
principles and we use the method to study the tempera-
ture dependence of the crystal lattice parameter, taking
silicon as an example. The calculations reproduce the
eFect of negative thermal expansion and they allow a mi-
croscopic analysis of its origin.

For a given temperature and pressure the equilibrium
state of a perfect or imperfect crystal is determined by
the Gibbs free energy,

Here N~, N~, . . . , T, p, U, S, and V are the numbers of
particles (atoms and electrons) of type A, 8, . . . , tem-
perature, pressure internal energy, entropy, and crystal
volume. Particle numbers, temperature, and pressure
are determined by the experimental situation. The de-
tailed atomic structure (in thermodynamic equilibrium)
and its internal energy, entropy, and volume follow from
the condition that 6 must be at a minimum of all possi-
ble atomic arrangements and electronic states.

In our calculations of the Gibbs free energy we take
the static and vibrational contributions into account.
Electronic excitations will be neglected because they con-
tribute only at higher temperatures. Equation (1) can be
evaluated if the electron ground-state total energy,
U""",and all vibrational frequencies, co„(k), are known
(see Refs. 3 and 4). From dG/da =0 it follows that'

G(Ng, Ntt, . . . , T,p) =U —TS+pV. a= g y„(k)c,, „(k).
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The sum goes over all vibrational modes. The y„(k) are
the mode Griineisen parameters [y„(k) = —d[lnco„(k)]/
d[lnV]] and the c, ,n(k) are the contributions of the
modes i n, k) to the specific heat
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FIG. 1. Coe%cient of thermal expansion for crystalline sil-

icon as a function of temperature. Experimental data (open
circles) are from Ref. 2.

c,, „(k)= [hco„(k)/Vl d [exp[6co„(k)/k~T] —1] '/dT .

Equation (2) shows that a negative thermal expansion
can arise if some modes have a negative y„(k). ' Pre-
vious (empirical) calculations have evaluated Eq. (2),
taking only the explicit T dependence of the c,, „(k) into
account. We take a diA'erent approach: Instead of
evaluating the derivatives of the individual co„(k), we
calculate the Gibbs free energy as a function of lattice
parameter and then determine its minimum (see Ref. 4).
The calculations are performed using density-functional
theory (DFT) in the local-density approximation for ex-
change and correlation and first-principles pseudopoten-
tials. The phonon energies @co„(k)are evaluated by di-
agonalizing the dynamical matrix D;i =d U'""'/d R;
x dRi. As the D; ~ change with lattice parameter,
anharmonic eA'ects are included in the calculations. ' As
a consequence, the vibrational frequencies and also the
mode Gruneisen parameters y„(k), the bulk modulus Bo,
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and the c,, „(k) become volume dependent and by this
also (indirectly) temperature dependent. This has usual-
ly been neglected in calculations based on approximate
methods, ' but it becomes important for temperatures
above 300 K.

The dynamical matrix can be calculated directly from
many DFT calculations or it can be calculated from an
expansion of the DFT total energy U"""([R;])for any
lattice parameter in an analytic form, which we need to
know only up to second order in the atomic displace-
ments. We take the second approach. As described in
Ref. 4, D; J can be obtained from the bulk modulus Bp
and the breathing-mode force-constant kb The. latter
corresponds to an artificial distortion of the Si crystal
lattice, where the four neighbors of an atom are dis-
placed in a breathing-mode fashion. All other atoms are
kept fixed at their perfect-crystal positions. Note that
both quantities are second derivatives of the total energy,
as is the dynamical matrix. Both quantities probe dif-
ferent aspects of the crystal: Bo corresponds to a long-
wavelength distortion [k-(0,0,0)] and kb corresponds
to a wave packet of short-wavelength distortions.

Although the phonon dispersion curves obtained by
the method of Ref. 4 have some well-known deficiencies
(see the fiattening of the experimental bands at A' and L
in Fig. 4), it turns out that the derivative of the Gibbs
free energy with respect to the crystal lattice parameter
is quite accurate. Bp is known from theory and experi-
ment but kb can be obtained from theory only. Our
DFT calculations [plane-wave basis (E,„& =20 Ry), two-
atom cell, ten special k points] give the following results
at T-0 K: ao-5.385 A (experiment, 5.43 A), Bo
=0.947 Mbar (experiment, 0.992 Mbar), and Bo =3.93
(experiment, 4.2). The effect of zero-point vibrations is
included in t.hese values. Figure 2 shows the T=O K

equation of state [Eq. (1)]. It also shows how Bo and kb
depend on the lattice parameter. These curves are
slightly nonlinear functions of the lattice parameter.
The numerical accuracy of this nonlinearity is not very
high, which affects the accuracy of our results at higher
temperature (T~ 300 K). From D; i we obtain the vi-
brational modes (again as functions of the lattice param-
eter). We then evaluate the Gibbs free energy at normal
pressure, and from its minimum as a function of lattice
parameter the theoretical curve in Fig. 1 is obtained.

The negative expansion is indeed reproduced by the
theory (see Fig. 1). The origin of this effect lies in the
temperature-dependent contributions of the Gibbs free
energy which are displayed in Fig. 3 for three charac-
teristic temperatures. The Gibbs free energy is the sum
of the T 0 K equation of state (left-hand side of Fig. 2)
and the bottom row of Fig. 3. It is worth noting that the
entropy term dominates the temperature-dependent con-
tributions of the Gibbs free energy at all temperatures.
Thus, the thermal expansion, including the range where
it is negative, is an entropy-driven effect. The slope of
the vibrational entropy S"' T (a—nd of U"' S"' T) is-
found to be negative at T 10 K, positive at T 80 K,
and negative at T 500 K. Therefore, the minimum of
the T-0 K Gibbs free energy (i.e., of U"""+U"' in

Fig. 2) is shifted to a larger value of lattice parameter at
T-10 K, to a smaller value at T-80 K, and to a larger
value at T 500 K. The shift at T 10 K is very small
and cannot be resolved in Fig. l.

Figure 4 gives a schematic summary of why the slope
of —5"' T changes sign for different temperatures:

At high temperatures, both the acoustic and the opti-
cal branches of the phonon band structure are occupied.
We may therefore replace the whole band structure by
one average energy Aro. Because the interatomic coup-
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FIG. 2. Equation of state at T=O K (i.e., U"""+U"' 0), the bulk modulus 80, and the breathing-mode force constant kb for a Si
crystal as a function of lattice parameter, as derived from density-functional-theory calculations.
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p[G. 3. The temperature-dependent contributions to the Gibbs free energy at three characteristic temperatures for crystalline sil-

icon. The bottom row shows the vibrational Helmholtz free energy without zero-point vibrations.

ling decreases with increasing interatomic distances, this average frequency decreases with increasing lattice parameter
(see right-hand side of Fig. 4). Thus, with increasing lattice parameter more phonons get thermally occupied and the
entropy increases; i.e., the slope of S"' T is negative a—nd the lattice expands.

At T 80 E, only phonons with an energy in the lower half of the band structure are excited. This implies that the
high density of states of the transverse acoustic (TA) branch at A' and L is important. With increasing lattice parame-
ter, the hybridization between the acoustic and optical branches becomes smaller, which implies that the hybridization
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FIG. 4. Schematic explanation of the thermal expansion of
silicon. The left-hand side shows the phonon band structure as
it follows from our parameter-free approach (see text) in com-
parison with experimental results (Ref. 11). The right-hand
side shows the average phonon energy, hco, which is relevant at
high temperatures, at which the whole phonon band structure
is thermally occupied. Furthermore, it shows the hybridization
band gap between the acoustic and optical band. This gap de-
creases with increasing lattice parameter. Then the acoustic
"level" shifts to higher energies with increasing lattice parame-
ter.

gap decreases and the TA(X) and TA(L) energies move
to higher energy (see Fig. 4). In other words, the
Gruneisen parameters of the zone-boundary phonons
TA(X) and TA(L) are negative. As the density of states
is shifted to higher energies, fewer phonons get excited.
The entropy therefore decreases with increasing lattice
parameter and —S"' T has a positive slope. Therefore,
the lattice contracts compared to the T=O K lattice pa-
rameter.

At very low temperatures, only the acoustic branch at
I is occupied. Here the bands get flatter with increasing
lattice parameter. As a consequence, more phonons get
occupied and thus the entropy increases with increasing
lattice parameter. Thus, the slope of —S""Tis negative
and the lattice expands.

Our calculations reproduce the experimentally known
effect of negative thermal expansion (see Fig. 1) and
they provide a detailed microscopic explanation. Quanti-
tatively the agreement between theory and experiment is

not too bad: Note that we are dealing with very small
changes of the lattice parameter (of order 10 A) and
that our theoretical bulk modulus, as determined by a
converged DFT calculation, is about 4.5% smaller than
the experimental value. Therefore, one can hardly ex-
pect better quantitative agreement between a param-
eter-free theory and experitnent. The same qualitative
behavior of the thermal expansion should occur for all
systems with two atoms per unit cell, provided that the
acoustical- and optical-phonon branches are well
separated.
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